商品详情大图

四层PCB电路板加急打样

及时发货 交易保障 卖家承担邮费

商品详情

在高频pcb打样时,根据其层数会采用不同的表面处理方式,简单的单面板、双面板,通常表面处理方式大部分都是采用喷锡或OSP的比较多,而4层以上的高频板采用沉金表面处理方式的较多。每一种PCB表面处理方式都有自己的特点,今天就介绍几种常见的高频pcb打样表面处理发方式。

1.喷锡

喷锡也叫热风整平(HASL),早期是高频pcb打样常用的一种表面处理方式。随着pcb的发展,喷锡工艺已经很成熟,成本也低,现在有了无铅喷锡和有铅喷锡之分。喷锡适合目视检查和电测,在高频pcb打样中属于的表面处理方式之一。

2.化镍金

化镍金在高频pcb打样中也是应用比较大的一种pcb表面处理方式,化镍金中的镍层是镍磷合金层,这里不做详细说明。化镍金适用于无铅焊接、smt、开关接触设计、铝线绑定、厚板等,表面非常平整,抵抗环境攻击强。

3.镍钯金

镍钯金之前在半导体上应用比较多,随着发展,现在高频pcb打样也开始逐渐适用。比ENIG和电镍金成本要便宜,适合多种表面处理工艺并存在板上。

4.电镀镍金

电镀镍金有硬金和软金的区别,硬金如金钴合金,软金属于。在IC载板(比如PBGA)上电镀镍金用的比较多,主要是用于金线和铜线绑定;但在C载板电镀的时候,需要在金手指绑定的地方额外做导电线出来才能电镀。在高频pcb打样中,电镀镍金适合接触开关设计和金线绑定,适合电测试。

以上便是今天和大家介绍的几种高频pcb打样常用的表面处理方式,希望对你有所帮助!

导电孔Via hole又名导通孔,为了达到客户要求,线路板导通孔一般需要塞孔,经过大量的实践,改变传统的铝片塞孔工艺,用白网完成线路板板面阻焊与塞孔。生产稳定,质量可靠。
Via hole导通孔起线路互相连结导通的作用,电子行业的发展,同时也促进PCB的发展,也对印制板制作工艺和表面贴装技术提出更高要求。Via hole塞孔工艺应运而生,同时应满足下列要求:

(一)导通孔内有铜即可,阻焊可塞可不塞;

(二)导通孔内有锡铅,有一定的厚度要求(4微米),不得有阻焊油墨入孔,造成孔内藏锡珠;

(三)导通孔有阻焊油墨塞孔,不透光,不得有锡圈,锡珠以及平整等要求。



随着电子产品向“轻、薄、短、小”方向发展,PCB也向高密度、高难度发展,因此出现大量SMT、BGA的PCB,而客户在贴装元器件时要求塞孔,主要有五个作用:

(一)防止PCB过波峰焊时锡从导通孔贯穿元件面造成短路;特别是我们把过孔放在BGA焊盘上时,就先做塞孔,再镀金处理,便于BGA的焊接。



(二)避免助焊剂残留在导通孔内;



(三)电子厂表面贴装以及元件装配完成后PCB在测试机上要吸真空形成负压才完成:(四)防止表面锡膏流入孔内造成虚焊,影响贴装;(五)防止过波峰焊时锡珠弹出,造成短路。



导电孔塞孔工艺的实现

对于表面贴装板,尤其是BGA及IC的贴装对导通孔塞孔要求平整,凸凹正负1mil,不得有导通孔边缘发红上锡;导通孔藏锡珠,为了达到客户的要求,导通孔塞孔工艺可谓五花八门,工艺流程特别长,过程控制难,时常有在热风整平及绿油耐焊锡实验时掉油;固化后爆油等问题发生。

现根据生产的实际条件,对PCB各种塞孔工艺进行归纳,在流程及优缺点作一些比较和阐述:注:热风整平的工作原理是利用热风将印制电路板表面及孔内多余焊料去掉,剩余焊料均匀覆在焊盘及无阻焊料线条及表面封装点上,是印制电路板表面处理的方式之一。



一 、热风整平后塞孔工艺
此工艺流程为:板面阻焊→HAL→塞孔→固化。采用非塞孔流程进行生产,热风整平后用铝片网版或者挡墨网来完成客户要求所有要塞的导通孔塞孔。塞孔油墨可用感光油墨或者热固性油墨,在湿膜颜色一致的情况下,塞孔油墨采用与板面相同油墨。此工艺流程能热风整平后导通孔不掉油,但是易造成塞孔油墨污染板面、不平整。客户在贴装时易造成虚焊(尤其BGA内)。所以许多客户不接受此方法。

二 、热风整平前塞孔工艺
2.1 用铝片塞孔、固化、磨板后进行图形转移
此工艺流程用数控钻床,钻出须塞孔的铝片,制成网版,进行塞孔,导通孔塞孔饱满,塞孔油墨塞孔油墨,也可用热固性油墨,其特点硬度大,树脂收缩变化小,与孔壁结合力好。工艺流程为:前处理→ 塞孔→磨板→图形转移→蚀刻→板面阻焊 。用此方法可以导通孔塞孔平整,热风整平不会有爆油、孔边掉油等质量问题,但此工艺要求性加厚铜,使此孔壁铜厚达到客户的标准,因此对整板镀铜要求很高,且对磨板机的性能也有很高的要求,确保铜面上的树脂等去掉,铜面干净,不被污染。许多PCB厂没有性加厚铜工艺,以及设备的性能达不到要求,造成此工艺在PCB厂使用不多。

2.2 用铝片塞孔后直接丝印板面阻焊
此工艺流程用数控钻床,钻出须塞孔的铝片,制成网版,安装在丝印机上进行塞孔,完成塞孔后停放不得超过30分钟,用36T丝网直接丝印板面阻焊,工艺流程为:前处理——塞孔——丝印——预烘——曝光一显影——固化 用此工艺能导通孔盖油好,塞孔平整,湿膜颜色一致,热风整平后能导通孔不上锡,孔内不藏锡珠,但容易造成固化后孔内油墨上焊盘,造成可焊性不良;热风整平后导通孔边缘起泡掉油,采用此工艺方法生产控制比较困难,须工艺工程人员采用特殊的流程及参数才能确保塞孔质量。

2.3 铝片塞孔、显影、预固化、磨板后进行板面阻焊
用数控钻床,钻出要求塞孔的铝片,制成网版,安装在移位丝印机上进行塞孔,塞孔饱满,两边为佳,再经过固化,磨板进行板面处理,其工艺流程为:前处理——塞孔一预烘——显影——预固化——板面阻焊由于此工艺采用塞孔固化能HAL后过孔不掉油、爆油,但HAL后,过孔藏锡珠和导通孔上锡难以完全解决,所以许多客户不接收。

2.4 板面阻焊与塞孔同时完成
此方法采用36T(43T)的丝网,安装在丝印机上,采用垫板或者钉床,在完成板面的同时,将所有的导通孔塞住,其工艺流程为:前处理--丝印--预烘--曝光--显影--固化此工艺流程时间短,设备的利用率高,能热风整平后过孔不掉油、导通孔不上锡,但是由于采用丝印进行塞孔,在过孔内存着大量空气,在固化时,空气膨胀,冲破阻焊膜,造成空洞,不平整,热风整平会有少量导通孔藏锡。目前,我公司经过大量的实验,选择不同型号的油墨及粘度,调整丝印的压力等,基本上解决了过孔空洞和不平整,已采用此工艺批量生产。

随着频率的不断增加,控制印刷电路板(PCB)材料的相位一致性越来越难。准确预测线路板材料的相位变化并不是一项简单或常规的工作。高频高速PCB的信号相位在很大程度上取决于由其加工而成的传输线的结构,以及线路板材料的介电常数(Dk)。介质媒介的Dk越低(例如空气的Dk约为1.0),电磁波传播得越快。随着Dk的增加,波的传播会变慢,这种现象对传播信号的相位响应也会产生影响。当传播介质的Dk发生变化时,就会发生波形相位变化,因为较低或较高的Dk,会使信号在传播介质中的速度对应的变快或减慢。
线路板材料的Dk通常是各向异性的,在长度、宽度和厚度(对应x、y和z轴)三个维度中(3D)均具有不同的Dk值。对于某些特殊类型的电路设计,不仅需要考虑Dk的差异,还考虑到电路的加工制造对相位的影响。随着PCB工作频率的提高,尤其是在微波和毫米波频率下,例如:如第五代(5G)蜂窝无线通信网络基础设施设备、电子辅助汽车中的驾驶员辅助系统(ADAS),相位的稳定性和可预测性将变得越来越重要。

那么究竟是什么导致了线路板材料的Dk发生变化呢?在某些情况下,PCB上Dk的差异是由材料(例如铜表面粗糙度的变化)本身引起的。在其他一些情况下,PCB的制造工艺也会造成Dk的变化。此外,恶劣的工作环境(例如较高的工作温度)也会使PCB的Dk发生改变。通过了解材料的特性、制造工艺、工作环境、甚至Dk的测试方法,等多方面来研究PCB的Dk如何变化。这样能更好地理解、预测PCB的相位变化,并将其带来的影响小化。

各向异性是线路板材料的一种重要特性,Dk的特性非常类似于三维数学上的“张量”。三个轴上不同的Dk值导致了三维空间中电通量和电场强度的差异。根据电路所用的传输线类型,具有耦合结构电路的相位可以被材料的各向异性改变,电路的性能取决于相位在线路板材料上的方向。一般来说,线路板材料的各向异性会随板材的厚度和工作频率而变化,Dk值较低的材料各向异性较小。填充的增强材料也会造成这种变化:与没有玻璃纤维增强的线路板材料相比,具有玻璃纤维增强的线路板材料通常具有更大的各向异性。当相位是关键指标,并且PCB的Dk是电路设计建模的一部分时,描述比较两种材料之间的Dk值应该针对的是同一个方向轴线上的Dk。如需了解改变线路板材料Dk的多种因素(包括测量方法)的更多详细信息,请参阅罗杰斯公司的网络研讨会“UnderstandHow Circuit Materials and Fabrication Can Affect PCB Dk Variation and PhaseConsistency(了解线路板材料和制造工艺如何影响PCB的Dk变化和相位的一致性)”。

深入探讨设计Dk

电路的有效Dk取决于电磁波在特定类型传输线中的传播方式。根据传输线的不同,电磁波一部分通过PCB的介质材料传播,另外一部分会通过PCB周围的空气传播。空气的Dk值(约为1.00)低于任何电路材料,因此,有效Dk值实质上是一个组合Dk值,它由传输线导体中传播的电磁波、电介质材料中传播的电磁波,以及基底周围空气中传播的电磁波共同作用而确定。“设计Dk”就试图提供相对“有效Dk”更为实用的Dk,因为“设计Dk”同时考虑了不同传输线技术、制造方法、导线、甚至测量Dk的试验方法等多方面的综合影响。设计Dk是在电路形式下对材料进行测试时提取的Dk,也是在电路设计和仿真中适合使用的Dk值。设计Dk不是电路的有效Dk,但它是通过对有效Dk的测量来确定的材料Dk,设计Dk能反映电路真实性能。

对于特定的线路板材料,其设计Dk值可能会因为线路板不同区域的细微差异而发生变化。例如:构成电路导线的铜箔厚度可能会不均匀,这就意味着不同铜厚的地方设计Dk都会不同,并且由这些导体形成的电路的相位响应也会跟着发生变化。铜箔导体表面的粗糙程度也会影响设计Dk和相位响应,较光滑的铜箔(例如压延铜)对设计Dk或相位响应的影响要小于粗糙铜箔。

PCB介质材料的不同厚度中导体铜箔表面粗糙度对设计Dk和电路的相位响应产生不同影响。具有较厚基板的材料往往会受到铜箔导体表面粗糙度的影响较小,即使对于表面较为粗糙的铜箔导体,此时其设计Dk值也更接近于基板材料的介质Dk。例如,罗杰斯公司6.6 mil的RO4350B™线路板材料,在8至40GHz时,其平均设计Dk值为3.96。而对于厚度为30 mil的同一材料,设计Dk在相同频率范围内平均下降至3.68。当材料基板厚度再次增加一倍(60 mils)时,设计Dk为3.66,这基本就是这种玻璃纤维增强的层压板的介质固有Dk了。

从上面的举例中可以看出,较厚的介质基板受到铜箔粗糙度的影响较小,设计Dk值相对更低。但是,如果用较厚的线路板来生产加工电路,尤其是在信号波长较小的毫米波频率下,要保持信号幅度和相位的一致性就会更加困难。较高频率的电路往往更适合选用较薄的线路板,而此时材料的介质部分对设计Dk和电路性能影响较小。较薄的PCB基板在信号损耗和相位性能方面受导体的影响会更大一些。在毫米波频率下,就电路材料的设计Dk而言,它们对导体特性(如铜箔表面粗糙度)的敏感性也比较厚的基板要大一些。

如何选择传输线电路

在射频/微波和毫米波频率下,电路设计工程师主要采用以下几种常规的传输线技术,例如:微带线、带状线、以及接地共面波导(GCPW)。每种技术都有不同的设计方法、设计挑战、相关优势。例如,GCPW电路耦合行为的差异将影响电路的设计Dk,对于紧密耦合的GCPW电路,以及具有紧密间隔的传输线,利用共面耦合区域之间的空气,可以实现更的电磁传播,将损耗降到低。通过使用较厚的铜导体,耦合导体的侧壁更高,耦合区域中利用更多的空气路径可以大限度地减少电路损耗,但更为重要的是理解减小铜导体厚度变化带来的相应的影响。

许多因素都可以影响给定电路和线路板材料的设计Dk。例如,线路板材料的温度系数Dk(TCDk)这个指标,就是用来衡量工作温度对设计Dk及性能的影响,较低的TCDk值表示线路板材料对温度依赖性较小。同样,高相对湿度(RH)也会增加线路板材料的设计Dk,特别是对于高吸湿性的材料。线路板材料的特性、电路制造过程、工作环境中的不确定因素,都会影响线路板材料的设计Dk。只有了解这些特性,并且在设计过程中充分考虑这些因素,才能将其影响降到低。

下一条:PCB十二层板厂商,PCB多层板
深圳市赛孚电路科技有限公司为你提供的“四层PCB电路板加急打样”详细介绍
深圳市赛孚电路科技有限公司
主营:pcb电路板,pcb多层板,hdi线路板,pcb快板
联系卖家 进入商铺

四层PCB电路板信息

最新信息推荐

进店 拨打电话 微信