余杭区销售新型超塑性镁合金新型超塑性镁合厂家
-
¥120.00
合金化是提升镁合金塑性的有效方法,起到细化晶粒、弱化强基面织构、强化基面滑移、开启非基面滑移、诱导孪生的作用。大量研究表明通过添加稀土元素(RE),如Y、Nd、Ce、Gd和Ab等,能够有效地弱化织构,提升室温塑性。如图1所示,Mg-0.2Ce合金延伸率高达~38%,Mg-1.6Zn-0.5Gd合金延伸率达到~30%。基于滑移基线分析,Gd和Y元素的加入有助于开启非基面滑移,起到协调晶粒c轴应变的作用,满足Von Mises原则,即满足开启塑性变形的基本条件:存在至少五个立的滑移系。透射(TEM)分析进一步表明,Gd和Y元素有助于促进非基面滑移,使晶粒发生旋转并取向随机,起到弱化基面织构的作用。基于多晶弹塑性模型,Mg-1Y合金中非基面滑移的开启将影响织构演变,形成沿RD方向倾斜的双峰织构。
根据密度泛函理论(DFT),大部分非稀土元素,如Al、Zn或Ag,有助于提升Ⅰ型锥面和Ⅱ型锥面间交滑移激活能垒,阻碍交滑移开启,通常会对塑性产生不利影响。然而,Mg-3Al-1Zn(AZ31)合金的塑性通常纯镁,归因于纯镁存在明显的剪切带和大量二次孪晶,导致塑性变形不稳定,易产生应力集中。近期,Ahmad等人使用DFT理论预测了含有大量新型合金元素(如K、Sr和Li)的三元和四元非稀土Li-Al、Li-Zn基合金的塑性变形能力。通过引入塑性因子χ,对交滑移阻力加以表达,量化合金元素提升塑性的效果。当塑性因子χ= 1时,交滑移速率PB转变速率10倍,足以显著提升塑性;当塑性因子χ< 0时,将对塑性产生不利影响。此研究可进一步预测含有Sr、Mn、K、Sn、Ca和Zr元素的多元镁合金的塑性变形行为。通过对比Mg-Al-Zn-Ca-Mn、Mg-Zn-Sr及Mg-Mn-Sr合金实验结果,证实了理论的准确性。
通常,合金化可起到强化基面滑移、激活非基面滑移、加速交滑移、弱化基面织构及细化晶粒等作用,从而减少基面与非基面滑移间CRSS 差值,提升镁合金塑性。然而,对于大多数镁合金而言,仍难以实现强度和塑性的同步提升。为了获得高强塑性镁合金,一方面可通过巧妙的合金成分设计结合加工工艺,充分发挥溶质原子合金化作用。例如,提升凝固冷却速度或采用压力成形促进过饱和固溶体形成,过饱和溶质原子不仅可产生额外的固溶强化作用以提高强度,还可以强化软变形模式(基面滑移或孪生)、促进非基面滑移开启以提高塑性。此外,采用新型加工工艺,通过巧妙设计并调控镁合金微观组织,亦可实现强塑性同时提升。近期研究发现引入异构/混晶、梯度/层状异质结构、形成高密度纳米析出相/团簇和纳米孪晶是实现金属结构材料(包含镁及其合金)强塑性同步提升行之有效的策略。总之,充分发挥元素合金化作用并引入异构组织,有望为发展高强塑镁合金及其应用开辟新道路。
现在人们也认识到,ECAP加工在AZ31合金中产生了的超塑性性能,分析表明晶界滑动可能是控制速率的机制。
实际上,AZ31合金是一种单相镁合金,预计在高温超塑性变形过程中,第二相的缺失将导致动态晶粒长大。近的一项分析证明了在镁合金中保持非常小的晶粒尺寸对于超塑性流动的重要性。
镁合金是目前工程应用中轻的工程金属材料,具有比重轻、导热性好、电磁屏蔽能力强、易于回收等优点,被认为是21世纪富于开发和应用潜力的“绿色材料”,目前已在汽车电子、航天、通讯等行业得到了广泛应用。
镁(Mg)合金由于其固有的低密度和高比强度,是有前途的轻质结构材料,特别是在交通运输和航空航天领域。大多数高强度镁合金在室温下表现出较差的成形性和延展性,这限制了它们的广泛应用。通过适当的合金化设计和/或精细的微观结构控制,一些新开发的镁合金包括稀土 (RE) 和不含稀土的镁合金,在不显著降低强度的情况下表现出增强的延展性。本文为了找出其中的关键原因,从合金化设计策略和加工技术的微观结构控制等方面回顾了近期关于韧性镁合金的研究。在这篇综述中,本文从合金化设计策略和通过加工技术进行的微观结构控制方面回顾了具有增强延展性的镁合金的新发展。它可以通过适当的合金化设计与智能微结构控制相结合,为制造具有增强的成形性和延展性的镁合金提供见解。