商品详情大图

LabVIEW开发武汉船舶设计研究所项目,LabVIEW解密

及时发货 交易保障 卖家承担邮费

商品详情

利用labview为风机系统控制软件测试开发硬件在环仿真器
概述:使用NI TestStand、LabVIEW实时模块、LabVIEW FPGA模块和NI PXI平台创建用于西门子风机控制系统的嵌入式控制软件发布的硬件在环(HIL)测试系统。
由于我们的软件定期发布控制器的软件新版本,我们需要测试软件,验证这些软件将会在风力站的环境下可靠执行。在每个软件发布时,我们在现场使用软件之前,需要先在工厂接受性能测试。这个全新的测试系统让我们能够自动化这个流程。
从过去系统中学到的经验
我们之前的测试系统是在10年前开发的,它基于另一个软件环境和PCI数据采集板卡。测试系统体系结构和性能无法满足我们对全新的测试时间和扩展性的需求。维护也十分困难,并且不能自动化完成有效的测试。它还缺乏对测试结果自动生成文档和测试的可跟踪性,不提供所需的远程控制功能。此外,过去的HIL测试环境不支持多核处理,因此我们无法利用新多核处理器的计算能力。
未来系统的决定
在评价可用的技术之后,我们选择了LabVIEW软件和基于PXI的实时现场可编程门阵列(FPGA)硬件,开发我们全新的测试解决方案。我们相信这个技术会带来灵活性和可扩展性,满足我们未来的技术需求。同时,我们从NI提供的服务与产品质量中,建立了对解决方案的信心。
由于我们在测试内部系统中并没有深入的开发经验,我们将开发外包给位于丹麦的CIM Industrial Systems A/S公司。我们选择CIM Industrial Systems A/S是因为他们具有测试工程能力和欧洲多的LabVIEW认证架构师。CIM成功开发了这个项目,我们对得到的服务感到十分高兴。
灵活的实时测试系统体系结构
全新的测试系统通过在LabVIEW实时模块系统中,运行组件仿真模型,仿真实时风机组件的行为,为被测系统提供仿真信号。

图2:西门子风力测试系统体系结构
主计算机包含直观的LabVIEW用户图形界面,能够方便地通过在面板中移动组件进行调整。Windows操作系统应用程序与两个不兼容实时任务的外部仪器进行通信。

图3:主计算机具有直观的LabVIEW用户图形界面。
在主计算机上的软件通过以太网与位于PXI-1042Q机箱中的LabVIEW实时目标进行通信。LabVIEW实时模块运行通常包含20到55个并行执行的仿真DLL的仿真软件。这个解决方案能够调用使用几乎所有建模环境开发的用户模型,例如NI LabVIEW控制设计与仿真模块、The MathWorks, Inc. Simulink®软件或是ANSI C代码。我们仿真循环的典型执行速率是24 ms,为满足未来处理能力扩展需求提供了大量裕量。
用于定制风力涡轮协议和传感器仿真的FPGA板卡
由于缺少现有标准,在风机中使用的定制通信协议很多。使用基于NI PXI-7833R FPGA多功能RIO模块和LabVIEW FPGA模块,我们能够与这些协议进行通信并仿真。除了协议交互之外,我们使用这个设备仿真磁性传感器和三相电压电流仿真。其他的FPGA板卡与NI 9151R系列扩展机箱连接,进一步提高了系统通道数。
全新测试系统的优点
相比上一代解决方案有许多优点。由于系统的模块化特性,进行改进、修改和进一步开发十分简单。被测系统可以在无需测试系统体系结构任何变化的情况下进行快速替换。远程控制功能和系统的简单复制让我们能够在需要进行扩展时,灵活地将系统复制到其他站点。
仿真器为环境提供了在实验室中验证新软件发布和测试特殊解决方案的能力。它还给了我们测试我们正在研究的新技术和新概念的工具。

利用下一代医学成像技术以及PXI模块化仪器系统与NI LabVIEW进行进展性癌症研究
概述:使用OCT技术与授予专利的光源技术,并通过带有32个PXI-5105数字化仪的256同步通道的高速(60Ms/s)数据采集系统予以实现。

OCT是一种非入侵式成像技术,它提供半透明或不透明的材料的表下、断层图像。OCT图像使我们可以以与一些显微镜相近的精度可视化地展现组织或其他物体。OCT越来越受到研究人员的关注,因为它具有比核磁共振成像(MRI)和正电子发射型断层成像(PET)等其他成像技术高很多的分辨率。此外,该方法不要求我们作其他准备,而且对于患者非常安全,因为我们使用的激光输出能量非常之低并且无需使用电离辐射。
OCT利用一个低功耗光源及其相应的光反射以创建图像,该方法类似于超声,但我们监测的是光波,而不是声波。当我们将一束光投射在一个样品上,其中大部分光线被散射,但仍有小部分光线以平行光的形式反射,这些平行光可以被检测到并用于创建图像。
别系统概览
我们的任务便是利用光学解复用器创建一个高速傅立叶域OCT系统,以支持来自以192.2 THz为中心频率、频率间隔为25.0 GHz的宽带入射光(波长为1559.8 nm)的256个窄频带的分隔。频谱分离使得PXI-5105数字化仪的256个高速模数转换器(ADC)通道能以60 MS/s的采样率进行数据采集,并对所有的频带进行同步检测。
我们的系统包含32块8通道的PXI-5105数字化仪,它们分布在三个18槽的NI PXI-1045机箱上。我们利用NI PXI-6652定时与同步模块和NI-TClk同步技术,实现不同机箱上的数字化仪的同步,它提供了数十皮秒精度级的通道间相位同步性。我们选用PXI-5105是因为其高通道密度——每块板卡八个输入通道,这样使得256个高速通道的系统保持较小的外形尺寸。当我们完成数据采集之后,我们利用LabVIEW进行数据处理和可视化展示。
利用傅立叶域OCT系统中的光解复用器充当频谱分析仪,实现了每秒六千万次轴向扫描的OCT成像。利用一台共振扫描装置进行帧速率为16 kHz、每帧1400 A-线和3毫米深度范围的左右扫查,我们的OCT成像展示了23 µm的精度。
系统深度描述
在我们的系统中,所采用的光源是一个宽带超发光二极管(SLD,由NTT电子提供原型产品)。我们利用一个半导体光放大器(SOA,来自COVEGA公司,BOA-1004型)放大该SLD的输出光信号,并利用耦合器(CP1)将其等分导入到样本支路和参考支路。我们调整SOA1的输出光信号强度,使得样本信号的功率为9 mW,以满足ANSI的安全限制。我们的系统利用一个准直透镜(L1)和一个物镜(L2),将样本支路光信号导入到采样点(S)。我们使用一个共振扫描装置(RS、光电产品、SC-30型)和一个电镜(G,剑桥技术出品,6210型)扫描采样点的光束。我们的系统利用光照明光学收集来自采样点的后向散射或后向发射的光信号,并利用一个光循环装置C1将其导入至SOA2(来自COVEGA公司,BOA-1004型)。我们通过一个耦合器CP2(耦合比为50:50)整合SOA2的输出信号与参考光信号。该参考支路由光循环装置C2、准直透镜L3和参考反射镜RM组成。
我们的系统利用两只光解复用器(OD1与OD2)分离CP2的输出信号,以实现平衡检测。它利用平衡图片接收装置(来自New Focus公司,2117型)——共有256个图片接收装置,检测来自这两个OD的具有相同光频率的输出信号。它利用前述快速多通道ADC系统的32块PXI-5105数字化仪,检测来自图片接收装置的输出信号。所采集数据在单次采集过程中存储于数字化仪的板载深度存储器中,然后传输至计算机供分析。
就同步检测干涉频谱而言,OD-OCT与SD-OCT相似。其差别在于OD-OCT同时在不同频率以数据采集速率检测整个干涉图谱,而不是像SD-OCT那样——在某个时间跨度内累计输入到CCD检测装置中。因而,它根据数据采集系统的数据采集速率——在现有系统中该速率高达60 MHz——来确定轴向扫描速率。共振扫描装置的16 kHz速率确定了帧速率。我们仅使用了一个扫描方向进行数据采集(50%的占空比),从而得到每帧的采样时间为31.25 μs。该系统在每帧中获得1875次轴向扫描;然而,由于共振扫描装置的左右扫查呈高度非线性,我们仅使用了1400次轴向扫描,舍弃了475次轴向扫描。
研究结果
我们将动态范围定义为点扩散函数(PSF)的峰值与样本支路畅通时的背景噪声间的比值。我们根据结果估计,动态范围在各种深度下均约为40 dB并随着深度加深略有下降。OD-OCT的一个技术优势在于AWG的每个通道所检测的频带宽度小于25 GHz的频率间距。40 dB的动态范围基本足够生物组织的测量。
我们利用中性密度滤光镜将发射光衰减了39.3 dB。粗实曲线是在阻塞样本光信号的情况下测量所得的背景噪声。由这些数值确定的敏感度按照右手侧的垂直刻度标示。
图像的渗入深度约1毫米,浅于通常利用SS-OCT或SD-OCT获得的2毫米渗入深度。这是由低敏感度决定的。为得到一幅3D图像,需要大量的OCT截面。受限于存储器的大小,我们把采样率降至10 MHz。

使labview用于电厂保护的发电机综合数据采集与分析装置
概述:采用NI 的LabVIEW 和CompactRIO 硬件平台实现了水轮发电机的数据采集及分析装置各个装置通过以太网将相应的数据和故障分析的结果传输到监控中的服务器上。

应用方案:
水轮发电机侧装配一套数据采集及分析装置,各个装置通过以太网将相应的数据和故障分析的结果传输到监控中的服务器上,整个系统主要包括三个部分:
1. 采用工业控制计算机作为,监控中心的存储以及监控服务器
2. 采用NI 公司的实时嵌入式处理器、FPGA模块、采集卡组成高速数据采集及分析装置
3. 采用相应的传感器对相关的电测量和非电量进行采集,通过前端信号处理模块处理之后送到高速数据采集及分析装置的采集卡,以作为后续存储与分析的信号输入。


投放市场的必要性
发电厂的机组故障录波器基本上都没有使用,老式的故障录波器也正是要更新换代的时候,而且随着国民经济的快速增长,电力的需求越来越紧张,电网的建设步伐也在加快,电力系统故障录波器作为系统事故分析不可缺少的组成部分,市场的需求正在日益的增加。
使用NI 的硬件提高开发速度
CompactRIO硬件的高可靠性,实时处理器的,以及FPGA的并行高速计算能力以及LabVIEW的信号处理能力和便捷开发为本装置的研制提供了一个比较合适的软硬件平台。

NI TestStand 成果斐然
新的功能测试系统协助我们在紧迫的时间压力下完成工作,将新产品的设计从概念阶段带入制造阶段。NI TestStand 为我们的 LabVIEW 测试模块制造了一个模块化、可重复使用的测试架构,NI TestStand 对我们来说非常实用。从的角度来看,我们现在可以在的短时间内就开发完成测试系统,因为与软硬件开发有关的大部分风险都被移除了。我们初期的训练投资成本也因为开发这个的时间缩短,而且收回了成本。在未来的开发中,因为我们的工程师已经习惯使用这些工具,所以我们预期开发的时间会缩短 30 %。

监控系统包括了车载设备(on-board equipment)、1 个无线(off-board) 伺服器、电脑与无线网路设备。机器铲的车载设备包括:
 加上NI cRIO-9014 - 8 槽式机箱的CompactRIO 系统
 供振动量测用的NI 9233 模组
 供动态应变量测用的NI 9237 模组
 提供、高解析度转速测定资料的NI 9422 模组
 提供机器铲控制系统补偿讯号的NI 9205 模组
 装在机器铲主要旋转元件(马达与齿轮箱传动装置) 上的压电加速度计
 装在机器铲主要结构元件上的应变计
 主马达上的增量编码器
 无线网路设备
 电力滤波设备
车载的CompactRIO系统需要加速度计、编码器与应变计同时提供信号。振动与应变信号持续受到监控,并与设定的警报值做比较,在问题产生时可以抢先通报。如果发生警报时,信号会以使用者定义的间隔定期储存。发生这种状况时,CompactRIO平台的监控应用可以寻找佳的分析量测时段,并佳化信号杂讯比。运用本法,资料会定期以预设的间隔储存,以控制终的机械改变,而发生突发事件时资料也会记录下来。碰到以上2种状况时,机器铲控制系统的补偿信号会储存起来供参考之用,并提高主动校正的可能性。
透过LabVIEW,我们可量测香蕉的电容而决定水果的成熟度。而且平行电容板之间的距离,将高度影响量测结果。后我们发现,若电容板之间达4公分将可产生正确的结果。电容与电压量测作业,既且不会损坏水果,实为合适的量测技术

北京瀚文网星科技有限责任公司为你提供的“LabVIEW开发武汉船舶设计研究所项目,LabVIEW解密”详细介绍
展开更多
北京瀚文网星科技有限责任公司
主营:labview,labview开发,labview编程,labview维护
联系卖家 进入商铺

LabVIEW在伺服控制产品中的应用信息

最新信息推荐

进店 拨打电话 微信