长宁电子束焊接机代加工
-
面议
设备包括:
电子枪,产生电子束,
工作腔,大部分被抽成“低”或“高”真空,
工件机械手(定位机构),
电源以及控制和监视电子设备。
通过聚焦透镜后,光束可以直接或通过偏转系统偏转后用于焊接。它由两对线圈组成,每个X和Y方向一个。这些可以用于“静态”或“动态”偏转。静态偏转对于通过焊接定位梁很有用。动态偏转是通过向偏转线圈提供可由计算机控制的电流来实现的。这为电子束应用开辟了新的可能性,例如表面硬化或退火,的电子束定位等。
快速偏转系统也可以用于成像和雕刻(如果配备了适当的电子设备)。在这种情况下,设备像扫描电子显微镜一样操作,分辨率约为0.1毫米(受光束直径限制)。在类似的模式下,由计算机控制的细光束可以通过熔化薄的表面层在金属表面“写”或“画”图片。
即使没有在真空中实现,电子束焊接也永远不能“手动”进行,因为始终会产生强烈的X射线。梁和工件的相对运动通常是通过工件的旋转或线性移动来实现的。在某些情况下,可通过计算机控制的偏转系统移动光束来实现焊接。工件机械手大多是单设计的,可以满足焊接设备的特定要求。
高压设备还为阴极加热提供5 V以上的低压,为控制电极提供高达约1000 V的负电压。电子枪还需要用于校正系统,聚焦透镜和偏转系统的低压电源。如果要提供计算机控制的成像,雕刻或类似的光束应用,后提到的可能会非常复杂。可能还需要复杂的电子设备来控制工件机械手。
电子束焊机加工是在真空条件下,利用电流加热阴极发射电子束,带负电荷的电子束高速飞向阳极,途中经加快极加快,并经过电磁透镜聚集,使能量密度十分会集,可以把一千瓦或更高的功率会集到直径为5~10μm的斑驳上,获得高达109W/cm2左右的功率密度。如此高的功率密度,可使任何材料被冲击部分的温度,在百万分之一秒时间内升高到摄氏几千度以上,热量还来不及向周围扩散,就已把局部材料瞬时熔化、气化直到蒸腾去除。随着孔不断变深,电子束焊机照耀点亦越深入。由于孔的内侧壁对电子束发生"壁聚集",所以加工点或许到达很深的深度,从而可打出很细很深的微孔。
电子束焊机加工具有以下的特色:
1)能量密度高电子束聚集点范围小,能量密度高,适合于加工精微深孔和窄缝等。且加工速度快,。
2)工件变形小电子束加工是一种热加工,主要靠瞬时蒸腾,工件很少发生应力和变形,并且不存在工具损耗。适合于加工脆性、耐性、导体、半导体、非导体以及热敏性材料。
3)加工点上化学纯度高 由于整个电子束加工是在真空度1.33×10-2~1.33×10-4 Pa的真空室内进行的,所以熔化时可以防止由于空气的氧化作用所发生的杂质缺点。适合于加工易氧化的金属及合金材料,特别是要求纯度高的半导体材料。
4)电子束焊机可控性好 电子束的强度和方位均可由电、磁的方法直接控制,便于实现自动化加工。
电子束焊技术早于1948年源起于德国,1952年制作了台电子束加工机,1958年诞生了台电子束焊机。真空电子束焊机提示它的基本原理是:真空条件下,电子枪发射的电子束在高电压(通常是20kV~300kV)加快下(0.3~0.7倍的光速),通过电磁透镜聚集成高能量密度的电子束,当电子束炮击工件时,电子的动能转化为热能,焊区的部分温度突然上升到6000℃以上,使工件材料熔化,完结焊接。
电子束焊机与核工业的展开息息相关。因为核辐射的防护,对核容器质量提出了的要求,一些大厚度结构选用传统焊接或激光焊接方法无法完结的接头,核工业中选用的一些难熔高温材料,选用传统焊接或激光焊接方法很难完结联接,而电子束焊机能够很好地完结其联接。往后几十年中,我国的核能装备将以几何级数增加,电子束焊接作为一种的联接技术,必将在其中发挥重要作用。