南宁导热镁合金材料市场高导热镁合金型材
-
¥118.00
同铝合金一样,镁合金铸锭也常常显现裂纹,不过镁合金的裂纹敏感性比铝合金的轻得多,型式也有较大差别,也可以分为热裂纹与冷裂纹,不过镁合金的冷裂纹相当少见,仅在MB5和MB7合金锭中偶尔出现,因此镁合金的热裂纹废品量占95%以上。
热裂纹
铸锭在有效结晶区间形成的裂纹称热裂纹。在结晶区间内收缩困难是产生热裂纹的主要原因。合金在给定条件下,凡是能缩小脆性区温度范围、减少脆性区内收缩困难的因素都可以减小热裂纹敏感性。
合金热裂纹敏感性高低可根据其脆性区内塑性A和线收缩ε的大小判断,即根据温度-塑性图可判断合金敏感性。还A大于0.5%的几乎不产生热裂纹。而当A=0时则称之为脆性区,这时产生热裂纹的几率可以说是了。合金脆性的上限≤固液区的上限,而其下限则≤固液区的下限。
对镁合金热裂纹敏感性有影响的主要因素:合金成分与工艺因素。
化学成分
实验证明,凡是能细化晶粒的因素都能降低合金脆性区的上限,也就是可以缩小脆性的温度范围。因为晶粒越细,则越有利于晶间变形,减少结晶时的收缩阻力,裂纹就不会产生了。例如向Mg+4.5%Zn合金添加0.8%Zr,其固相线由344℃提高到550℃,脆性区缩小了206℃,同时还降低了固液区内的线收缩和提高了固液区的塑性,这三者都有利于消除热裂纹。
另外,凡是增大共晶量的组元,都会提高合金的固液区内的塑性。因为增大共晶量,可增大晶界液膜厚度,从而有利于晶界变形,将大大改善补缩条件和裂纹“修复”条件,不但热裂数量减少,而且程度也显著减轻。
共晶量和裂纹敏感性并不是呈线性关系,当共晶量小于其一极限值时,裂纹倾向性小,当增加到某一值后,敏感性骤升,再继续加大共晶量,则敏感性又下降,一直到零。
铸锭凝固时,随着冷却速度的加大,减小了脆性温度区间,提高了固液区的金属的塑性,有利于减少热裂纹。晶粒粗大的凝固着的锭的脆性温度也较大。过热合金熔体将使晶粒粗化,加大脆性温度范围,降低合金的塑性,从而加大脆性敏感性。
晶粒形状也对脆性区范围和固液区的塑性大小有影响,柱状晶的不但脆性区较大,且其固液区的塑性也较低,因而易形成热裂纹。
铸造速度、铸造温度、冷却强度、铸锭尺寸及形状都对铸锭凝固速度有着直接影响,因而直接影响铸锭的内应力、脆性区大和固液区的塑性。在铸造镁合金锭时,不能同时不适当地加大铸造速度与冷却强度,否则会加大热裂纹敏感性。镁合金有较大的热裂纹敏性,裂纹的分布形式主要与工艺条件有关,常见形式有表面裂纹和发状裂纹。
冷裂纹
铸锭中的冷裂纹是在凝固以后形成的,是当铸锭冷却到低于不平衡固相线温度以下时,由于铸锭收缩困难造成的,即取决于当时铸锭的内应力大小和塑性高低。铸造应力可分为热应力、相变应力和收缩阻力。在连续铸造时,镁合金的相变应力可不考虑,主要是其余的两种应力,但是收缩力也不大,同时可调控,因此,热应力是主要的,所以冷裂纹取决于在固态时铸锭内部热应力的大小和塑性高低。
热应力的产生是由于铸锭内外各层间的收缩不同步与收缩系数的相异,例如直径530mm MB15合金圆锭,在铸造速度为33.6cm/min时,中心部分的平均冷却速度为48℃/min,而外表层的为58℃/min,这种差别必然导致收缩系数不一样,另外各层的收缩时间也不同步,表皮先收缩,中心后收缩,这就会使铸锭内部产生应力。一旦这种热应力超过铸锭的屈服Rp0.2,就会形成冷裂纹。
热应力大小除与线膨胀系数α及温差有关外,还与合金的正弹性模E有关,镁合金的E小,只有45000N/mm2,热应力也会小一些。另外,在镁合金铸造过程中所允许的结晶速度较低,产生的热应力不大,故镁合金铸锭产生冷裂纹的几率不高。
镁是轻的结构材料,优点多,随着汽车对产品轻量化和节能减排等要求的提高,为镁的发展创造了大好机遇,成为世界一些国家开发与研究的热门课题,但是国际上对镁及镁合金产品生命周期的环境影响还缺乏全面系统的分析和评价,这也成为制约其大量使用的一个重要因素。目前,德国、澳大利亚和中国等的冶金科学家和材料界人士正致力于原镁提取工艺过程及其产品的LCA研究,取得了可喜的成果。2003年澳大利亚科学家的研究表明,电解法提取原镁的温室气体排放为20.4~26.4kgCO2当量/kg·Mg,而中国皮江法炼镁(含生产硅铁的电耗)的为37~47kgCO2当量/kg·Mg,后者的约为前者的2倍,这成了国际上对中国皮江法炼镁环境影响的负面评价。然而,北京工业大学材料环境协调性评价中心新的研究结果表明,2009年中国较的皮江炼镁法的温室气体排放强度为25.6kgCO2当量/kg·Mg,几乎与电解法的平均水平相当,而且还有进一步降低的空间。这得益于原镁提取过程中采取了综合的节能减排措施,例如全面改造炉窑,采用清洁能源、蓄热式高温空气燃烧技术及余热利用技术等。
与铝工业的LCA研究工作相比,对镁及其产品的LCA研究还处于初级阶段。铝、镁等轻质材料是减重的佳材料,对于以汽车为代表的交通运输工具轻量化、节能减排具有十分重要的意义。国际铝业协会在一份报告中称,汽车质量每减轻10%,油耗可降低6%~8%,有研究指出,汽车多用1kg铝在服役期间排放的CO2就可以下降约20kg;如果每辆汽车使用70kg镁合金,每年排放的的CO2可减少30%以上。
中国在发展镁合金方面特别是对镁-稀土合金的研发居世界地位,受到刮目相看,除了前面谈的一些成就,主要成就还有:
低成本非稀土镁合金
目前发展的新型镁合金的85%以上都或多或少含有稀土,它们的价格昂贵,提高了合金的价格,使其身价倍增,但在性价比上却大打折扣,推广应用不易。因此,研发低成本非稀土型的镁合金显得非常必要,中国在发展这类合金方面也取得了非凡的成就,,如上海交通大学的ASZ511Sb合金、AT72合金、AX51合金。
ASZ511Sb(Mg-5Al-1Zn-1Si-0.6Sb)合金,它是一种金属型重力铸造合金,不含合金元素,其主要合金元素为铝、锌、硅,还含有少量的锑与微量的稀土,用于金型重力铸造,铸件的室温屈服强度95N/mm2,抗拉强度Rm=235N/mm2,伸长率A=12%。合金的显微组织为α-Mg+共晶体,其晶体中的Mg2Si呈汉字状,Sb的加入显著细化了Mg2Si,使它成为均匀分布的颗粒。该合金在200℃、50N/mm2条件下的抗蠕变强度与稀土耐热镁合金AE42(Mg-4Al-2RE-0.2Mn)合金的相当,因此可以在100~150℃的温度下长期工作。该合金在5%NaCl盐雾试验时的腐蚀速率比AZ91D合金的低10%。
AT72铸造镁合金也是上海交通大学研发的,用于金属型重力铸造,以铝、锡为主要合金元素,还含有锌、锰、稀土等微量元素,金属型重力铸件的室温屈服强度Rp0.2=90N/mm2,抗拉强度Rm=225N/mm2,伸长率A=7%。铸态合金的显微组织以α-Mg固溶体为基体,其中分布着离异共晶Mg17Al12和少量的Mg2Sn,固溶处理后,Mg17Al12溶入基体,但仍有少量的Mg2Sn相。该合金的铝含量不多,有较好的压铸成形性能,与AZ91D合金的相当,但因铝的含量少,仅7%,重力铸件的时效强化效果较弱。AT72-T5合金压、铸件的室温力学性能:屈服强度Rp0.2=125N/mm2,抗拉强度Rm=225N/mm2,伸长率A=4.5%。该合金的抗腐蚀性能与传统AZ91D合金的相当。
AX51合金是一种压铸合金,以Al、Sr为主要合金元素,Ti为次要合金元素,是上海交通大学研制的,重力铸件的典型组织为α-Mg+共晶体(α-Mg+Al4Sr),含钛的Mg-5Al-1Sr合金的显微组织发生了明显的变化,晶界上的共晶组织由粗大的层片状转变为球状与短棒状,因而力学性能有较大提高。AX51合金压铸件的典型力学性能:屈服强度Rp0.2=138N/mm2,抗拉强度Rm=270N/mm2,伸长率A=7%。Mg-5Al-1Sr-Ti合金在175℃/70N/mm2的稳态拉伸蠕变速率比不含Sr、Ti合金的小1个数量级。
镁合金的是一类前景广宽的功能材料,典型的功能材料为:镁储氢材料、医用镁材、阻尼镁材、镁电池材料、镁阳极材料等。功能镁合金是一类新型的高技术材料,是镁产业的一个新领域,是世界材料工作者关注的重要焦点之一。镁合金是一类可降解新型医用材料,具有的优势和潜力。
在常压与约250℃时镁与H2可形成MgH2,而在低压与重高温度下又能释放氢,因而是一类有效的储氢材料,纯镁的储氢率高达7.6%,即10kg镁中可以储存0.76kg氢,把氢储存在合金中,可以控制释放速度,使用安全性。
镁的电极电位低,具有非常的电化学性能,可以作为一次电池与二次电池的电极,可用于制造各种高容量电池,镁与锂的物理化学性能相似,但镁电池,对环境友好,安全性高、易操作,资源丰富,价格合理,作为电池材料具有的优势。目前商用镍氢电池的储氢材料为LaNi5,储氢量仅约1.4%,比容量约330mAh/g,限制了镍氢电池的应用的推广。上海交通大学通过向LaNi5添加少量Mg,大大提高了其电化学容量,其比容量达到400mAh/g,并有良好的循环稳定性。
用仪表板横梁通常采用钢管和钢板冲压件组合焊接制造,此类钢制仪表板横梁总成的组成零件数量多,需要焊接组装,不利于尺寸控制,且整体重量大,不符合轻量化理念。而根据文献报道,采用镁合金压铸的仪表板横梁可减重50%以上,轻量化效果非常明显。主要是因为镁合金是目前应用的金属结构材料中轻的,具有密度小,比强度和比刚度高,阻尼性、切削加工性和铸造性能好等优点,因此镁合金仪表板横梁在国外汽车产品中得到广泛的应用。
本文主要从设计选材、结构优化和性能验证等方面,简要介绍AM60B镁合金在奇瑞某车型的仪表板横梁上的应用情况。
镁合金仪表板横梁的特点
镁合金仪表板横梁与钢制仪表板横梁相比具有以下特点:
(1)轻量化 镁合金的密度为1.78g/cm3,仅为钢密度的1/4,减重在50%以上。
(2)零件集成化程度高,尺寸稳定 与钢制件相比,镁合金仪表板横梁采用整体压铸的生产工艺,可以把传统钢质CCB的20多个零件集成为一个件。
(3)安装尺寸精度高 由于采用整体压铸,尺寸精度很高,所有的尺寸公差都可以控制在0.5mm以内,解决目前钢骨架安装过程中的干涉和异响等问题。
(4)设计灵活 由于采用压铸工艺,产品工艺性好,零件形状的设计自由度大。
(5)绿色环保 镁合金材料可以回收利用。
镁合金的选择
目前镁合金的种类有很多,汽车工业采用较多的是AM系和AZ系合金,常用镁合号主要有AM60B和AZ91D。其中AM60B的铝含量较低,由于随着铝含量的降低,材料的韧性逐渐增高,故与AZ91D相比,AM60B的韧性和塑性较好。AM60B是高纯牌号,因此具有和AZ91D一样优良的耐蚀性能,且与A380铝合金相比,耐蚀性更加。
本文所介绍的仪表板横梁形状复杂、体积庞大而且壁厚不均,要求承载各种仪表仪器,因此需具有较高的韧性和强度。通过综合考虑AM60B和AZ91D的性能以及参考有关文献资料,终决定选用AM60B(性能见表1)作为制造仪表板横梁的材料。
表1 AM60B镁合金的化学成分和物理性能