量水槽是指在明槽内设置一缩窄段(喉道),使之发生临界流,并于上游或上下游特定位置测水深,据以求得流量的量水设施,又称驻波槽或临界流槽。量水槽测流的特点是:淤积较小,杂物不易堵塞,水头损失较小,量精度较高,适用范围较大。量水槽主要分为长喉道槽及短喉道槽。
通过对油田污水处理系统各级污水处理设备的分析,发现了撇油罐是影响外排水质量的主要因素,进而对撇油罐结构、原理及工艺过程进行了分析,找出了影响撇油罐除油效率的主要原因,将浅池理论与聚结技术相结合,并考虑流体变化因素,将撇油罐进料整流板改造为侧向波纹板聚结分离器,同时将清水槽固定堰板改造为可调活动堰板,改造后效果良好,配合其它污水处理设施,将外排生产水OIW(水中含油量)降至20mg·L-1以下,达到了海洋石油勘探开发污染物排放浓度限值(GB4914-2008)中的海域排放标准,环保效益与社会经济效益显著。
不锈钢集水槽具有表面光洁、不锈蚀、强度高、堰齿(水孔)均匀、槽体平整、可任意调节、安装简便等优点;不仅能安装时的水平,即使在池体因自然沉降影响平衡时,通过简便的调整仍能保持水平,有利于出水的水质水量,解决了传统集水槽存在的弊病,免除了除锈防腐的成本和定期清洗的繁杂劳动,简化了管理,美化了厂容厂貌。
随着我国的经济建设持续发展,对电力的需求不断加大。国内火力发电厂百万机组新建工程陆续增多,超大型自然通风冷却塔逐渐受到火力发电相关人士的重视。根据国家节能减排、低碳经济的要求,具有明显节能、降噪优势的高位水收水冷却塔具有广阔的应用前景,尤其是随着高位收水冷却塔逐步国产化后,其优势更加明显。高位收水冷却塔不同于常规湿冷塔之处主要在于取消了常规湿冷却塔底部的集水池和雨区,而在填料层底部直接采用高位收水装置。
集水槽主要承受集水槽内的内水压力作用,其次是单层配水槽传来的集中荷载及风荷载。内水压力随水深增加,压力越大,在内水压力作用下,集水槽壁板同时承受弯矩与拉力作用。采用传统平面假定方法不易准确计算出集水槽壁板承受的拉力,且不能根据水压力的特点进行变截面设计,同时忽略了暗框架与集水槽壁板作为一个整体,共同承受内水压力。
对于集水槽的桩基布置,传统的竖向荷载平均法计算出的桩数偏多,不易准确计算出桩承受的水平力。由集水槽结构形式及受力特点分析可以看出,集水槽各部分构件之间是相互协同作用,共同承受集水槽内水压力及其他荷载。平面假定简化计算只能顾此失彼,不能进行整体计算。因此,为准确真实地模拟集水槽结构整体受力的特性,满足结构优化设计的目的,集水槽的结构设计有必要采用三维有限元整体分析计算。
在上述荷载及工矿组合下,采用ANSYS 有限元软件进行静力计算,通过后处理后便能对集水槽各部分构件进行内力分析及结构设计。集水槽内力分析可以分为集水槽壁板和暗框架( 包括暗框架柱、暗框架顶梁、拉梁及承台梁)。集水槽整体位移变形可以看出,集水槽暗框架在⑥轴线变形大,集水槽壁板在①、②与⑤、⑥轴线之间变形大。集水槽的大变形约为14 mm。集水槽壁板内力分析取①、②轴线跨中(X=10.4 m)、⑤、⑥轴线跨中(X=43.2 m) 及沿集水槽高度方向(Z=5.0 m) 处进行内力分析。
高位收水冷却塔集水槽为地面式钢筋混凝土结构。集水槽壁板和暗框架作为一个整体共同承受槽内水压力、风荷载及单层配水槽传来的集中荷载。采用传统的平面假定计算方法难以准确计算出集水槽壁板所受拉力,进行变截面设计;不能对暗框架进行优化设计。
二沉池集水槽是污水沉淀过程中泥水、固液分离的后一道环节和工序,在实际的工程设计中,常见有3种布置形式: 内置双侧堰式、内置单侧堰式、外置单侧堰式 。内置单侧堰式、外置单侧堰式均为单侧堰进水,设计堰上负荷基本一致,从构造和水力条件来看,两者没有明显的优劣之分。内置双侧堰式的集水槽因堰上负荷小、出水水质好而应用较多。 但在近的工程设计与应用中发现双侧堰进水集水槽主要存在2个现象: