齐河县生产新型超塑性镁合金供应新型超塑性镁合金
-
¥120.00
合金化是提升镁合金塑性的有效方法,起到细化晶粒、弱化强基面织构、强化基面滑移、开启非基面滑移、诱导孪生的作用。大量研究表明通过添加稀土元素(RE),如Y、Nd、Ce、Gd和Ab等,能够有效地弱化织构,提升室温塑性。如图1所示,Mg-0.2Ce合金延伸率高达~38%,Mg-1.6Zn-0.5Gd合金延伸率达到~30%。基于滑移基线分析,Gd和Y元素的加入有助于开启非基面滑移,起到协调晶粒c轴应变的作用,满足Von Mises原则,即满足开启塑性变形的基本条件:存在至少五个立的滑移系。透射(TEM)分析进一步表明,Gd和Y元素有助于促进非基面滑移,使晶粒发生旋转并取向随机,起到弱化基面织构的作用。基于多晶弹塑性模型,Mg-1Y合金中非基面滑移的开启将影响织构演变,形成沿RD方向倾斜的双峰织构。
通常,合金化可起到强化基面滑移、激活非基面滑移、加速交滑移、弱化基面织构及细化晶粒等作用,从而减少基面与非基面滑移间CRSS 差值,提升镁合金塑性。然而,对于大多数镁合金而言,仍难以实现强度和塑性的同步提升。为了获得高强塑性镁合金,一方面可通过巧妙的合金成分设计结合加工工艺,充分发挥溶质原子合金化作用。例如,提升凝固冷却速度或采用压力成形促进过饱和固溶体形成,过饱和溶质原子不仅可产生额外的固溶强化作用以提高强度,还可以强化软变形模式(基面滑移或孪生)、促进非基面滑移开启以提高塑性。此外,采用新型加工工艺,通过巧妙设计并调控镁合金微观组织,亦可实现强塑性同时提升。近期研究发现引入异构/混晶、梯度/层状异质结构、形成高密度纳米析出相/团簇和纳米孪晶是实现金属结构材料(包含镁及其合金)强塑性同步提升行之有效的策略。总之,充分发挥元素合金化作用并引入异构组织,有望为发展高强塑镁合金及其应用开辟新道路。
镁合金是目前工程应用中轻的工程金属材料,具有比重轻、导热性好、电磁屏蔽能力强、易于回收等优点,被认为是21世纪富于开发和应用潜力的“绿色材料”,目前已在汽车电子、航天、通讯等行业得到了广泛应用。
金属及合金在一定条件下的流变应力应变速率敏感性指数m大于0.3,表现出特大伸长率(200%~3000%)的性能称为超塑性。镁合金的室温变形能力低,但是在超塑性状态下却有很高的塑性,可利用超塑性加工形状复杂的零件与模锻件。
镁(Mg)合金由于其固有的低密度和高比强度,是有前途的轻质结构材料,特别是在交通运输和航空航天领域。大多数高强度镁合金在室温下表现出较差的成形性和延展性,这限制了它们的广泛应用。通过适当的合金化设计和/或精细的微观结构控制,一些新开发的镁合金包括稀土 (RE) 和不含稀土的镁合金,在不显著降低强度的情况下表现出增强的延展性。本文为了找出其中的关键原因,从合金化设计策略和加工技术的微观结构控制等方面回顾了近期关于韧性镁合金的研究。在这篇综述中,本文从合金化设计策略和通过加工技术进行的微观结构控制方面回顾了具有增强延展性的镁合金的新发展。它可以通过适当的合金化设计与智能微结构控制相结合,为制造具有增强的成形性和延展性的镁合金提供见解。
对于大多数镁合金来说,仍然难以实现高强度-塑性协同作用。为了克服权衡困境,一种方法是通过精心设计合金和定制加工路线来提高溶质原子的有效性,例如通过增加冷却速度和/或压力形成过饱和固溶体。过饱和固溶体中过多的溶质原子不仅可以产生额外的固溶强化以提高强度,而且还可以协同强化软模和/或促进非基底滑移的激活以提高延展性。而且,通过使用改进的和/或新颖的工艺路线来设计和控制所产生的微结构是至关重要的。实际上,近的各种研究进展表明,引入多峰/双峰、梯度/层状异质结构、在超细晶结构中形成致密的纳米级析出物/团簇和纳米孪晶对于实现强度-延展性协同作用是有效的。在包括镁及其合金在内的金属材料中。