山东阻燃东丽A310MX04聚苯硫醚
-
¥42.00
Torelina™A310MX04 东丽PPS/玻璃纤维+无机填充物增强 高填充, 标准等级
可随货提供物性表,材质证明,UL 黄卡,MSDS (安全数据表)
关于东丽PPS树脂TORELINA的特征
Ⅰ. 耐热性
具有良好的长期耐热性,能在200℃~240℃温度下持续使用。也能在短时间内承受 260℃以上的高温。
Ⅱ. 机械强度
熔点约为280℃,玻璃态转移温度约为90℃,热变形温度介于260℃~270℃之间,甚至在较高的温度下仍然保持很高的强度,同时具有的抗蠕变性能。
Ⅲ. 耐热水性
吸水率很低,在热水中仍具有较高的强度。
Ⅳ. 耐化学药品性
具有很强的耐酸、碱和各种有机溶剂的特性,仅次于氟树脂。
Ⅴ. 阻燃性
在未添加任何阻燃剂的情况下,仍具有较高的阻燃性(UL94 燃烧性V0等级)。
Ⅵ. 电气性能
在高温、高湿条件下,仍具有较好的电气性能。
Ⅶ. 尺寸稳定性
由于其耐热性、耐水性和耐化学药品性能好,在各种环境中都呈现出很好的尺寸稳定性。
Ⅷ. 成形性
由于流动性好,所以能用于精密部件的注塑成型。
Torelina™A310MX04 东丽PPS/玻璃纤维+无机填充物增强 高填充, 标准等级
可随货提供物性表,材质证明,UL 黄卡,MSDS (安全数据表)
东丽技术解决方案
东丽树脂事业部为各界尊贵客户提供综合全面的解决方案,以及从规划到量产的全程支持服务。我们的将与您的工程师紧密合作,了解您的产品需求,从而为您提供有关材料选择、故障分析、模塑评估、产品设计等方面的佳建议。
东丽 CAE 技术
自 20 世纪 70 年代起,东丽采用的CAE模拟技术帮助客户进行产品设计和成型指导,其内部自主开发的 CAE 软件也得到了成功的商业推广。
东丽的 CAE 技术将多种评估技术与广泛的材料数据库相结合,可以就终零件的加工和性能提供有效建议。如今,东丽每年在范围内提供数百项模拟评估。
东丽 3D Timon™ 技术发展历程
Torelina™A310MX04 东丽PPS/玻璃纤维+无机填充物增强 高填充, 标准等级
可随货提供物性表,材质证明,UL 黄卡,MSDS (安全数据表)
TORELINA的成型基本特性
Ⅰ. 分子量
注塑规格的TORELINA™,重量平均分子量(Mw)大约在20,000到60,000之间(近似).
Ⅱ. 结晶行为
PPS树脂的熔点大约278℃,玻璃态转化温度约为93℃,图2.1充分地显示了表征成型品随着温度的递增,结晶行为变化过程的DSC(差示扫描量热)曲线。结晶相的熔融峰值在278℃左右,但是在微观状态下,温度即使上升到约290 ℃时可能仍然有晶体存在。如果在这些晶体残存的状态下,TORELINA™再次被冷却、固化时,将无法充分的表现出它固有的机械性能,例如:韧性。所以它的成型温度应至少在300℃以上。这方面也适用于其他结晶型聚合物。
对于使用低模温成型出来的产品,结晶度会较低,换句话说,在120℃ ~ 130℃会出现一个冷结晶峰值,详情请参考TORELINA™物性技术资料。对于已经充分结晶化的PPS成型品,根据品名规格与测定方法的不同,结晶度一般能达到40%~60%。在标准状态下,PPS树脂的结晶部份的密度是1.43 g/cm3,非晶部分的密度是1.32 g/cm3。 因此,充分结晶的成型品的PPS树脂的密度大约是1.38 g/cm3,在熔融状态下的密度约为1.05 g/cm3。
Torelina™A310MX04 东丽PPS/玻璃纤维+无机填充物增强 高填充, 标准等级
PPS的性能缺陷
聚苯硫醚(PPS)具有的机械强度、热稳定性、加工性能,为世界第六大工程塑料。但PPS的脆性较大,无法自润滑,且在高温下容易被氧化,限制了其在工业上的应用
主要应用领域
聚苯硫醚产品拥有不同的形式和等级,例如树脂、纤维、长丝、薄膜以及涂层等,应用十分广泛。聚苯硫醚的主要应用领域包括汽车工业、电子电气、化工行业、、纺织行业、环保行业等。
PPS有哪些应用问题?
未经改性的PPS有着一些无法避免的缺陷:
加工难:这是所有耐高温材料的大痛点——加工温度高,无论是成型工艺还是加工能耗,都会面临挑战。此外,在熔融过程中PPS还是还容易发生热氧化交联反应,导致流动性降低,进一步提高加工难度;
韧性差:PPS的分子链呈刚性,大结晶度高达70%,延伸率低且熔接强度也一般,终导致的结果是未改性PPS的耐冲击性较差,限制了应用范围;
成本高:PPS原料和通用工程塑料相比,价格要高出1-2倍左右,和一些改性后的材料相比性价比不高;
涂装难:耐化、耐介质同样也是一把双刃剑,PPS的表面涂装和着色性能并不理想。虽然这个缺陷目前来看不算大问题,但也是限制应用的一个因素。
。
Torelina™A310MX04 东丽PPS/玻璃纤维+无机填充物增强 高填充, 标准等级
PPS增强增韧改性、摩擦性能改性、导电性能改性、流变性能改性和抗氧化性能改性的研究
1、PPS增强增韧改性研究
PPS增强增韧改性方式主要有纳米材料改性、纤维改性、合金共混改性、化学改性等。
纳米材料改性一般分为2种:
1)采用纳米材料对纤维表面进行处理;
2)以纳米材料为填料直接增强增韧。
纤维的加入可以在保持PPS性能的前提下减少PPS的用量,降低成本,并克服了PPS易脆性断裂和低断裂应变等缺点。KhanSM等通过增加碳纤维(CF)层数增强PPS。结果表明:当CF层数由4层增至20层时,材料的冲击强度由2.60kJ/m2升至7.20kJ/m2,硬度也明显增大。
合金共混改性可以克服单一聚合物性能上的局限性。聚苯醚(PES)具有的抗冲击性能,可以有效克服PPS韧性差的缺点。热塑性聚氨酯(TPU)具有的韧性,可用于增韧聚丙烯、PPS、聚酰胺(PA)、聚缩醛等多种热塑性塑料。
化学改性主要是通过在PPS中引入活性官能团(氨基、羧基等),达到增强增韧目的。
2、PPS摩擦性能改性研究
一般通过合金共混、加入填料构建骨架材料等方式改善PPS复合材料的耐磨性能,扩宽其应用范围。
PA具有的耐磨性能,其自润滑特性可以提高PPS在滑动或滚动下的耐久性。
纳米材料可以防止PPS分子链结构的蠕变和滑动或者提高转移膜与摩擦副的结合强度,提高PPS的摩擦性能。
纤维可以形成骨架保护基体材料,有效地降低材料的接触面积,进而降低了其摩擦系数。
在PPS/SCF/Gr复合材料中加入二硫化钨(WS2)或氮化铝(AlN)纳米颗粒,可以进一步改善其摩擦性能,这是因为纳米颗粒产生承重摩擦膜,增强了滑动副的边界润滑能力,缓解摩擦表面的黏附磨损倾向。
3、PPS导电性能改性研究
PPS导电性能改性的主要方法是将PPS和导电性能的材料进行共混,提高PPS的导电性能。
纤维素纤维、金属纤维、长碳纤维(LCF)均可以改善PPS的导电性能。
这是由于复合薄膜具有高孔隙率,且对液体电解质有更好的亲和力,降低了其与电极之间的界面电阻。
4、PPS流变性能改性研究
JiangT等分别采用具有圆形和矩形横截面的GF(RdGF,RcGF)对PPS进行改性。结果表明:PPS/RcGF复合材料的黏度远低于PPS/RdGF复合材料,这是因为与RdGF相比,RcGF具有更高的流动敏感性,且对称程度较低,其“网络”结构在低剪切速率下更容易被破坏。
碳纳米管、Gr、笼型聚倍半硅氧烷(POSS)等纳米材料可以有效降低PPS的熔体黏度,提高其熔体加工性能。
5、PPS抗氧化性能改性研究
目前,PPS抗氧化性能改性通常有表面涂覆法、添加纳米材料、添加抗氧化剂3种方法。
表面涂覆法是在PPS纤维或纤维产品的表面覆盖由抗氧化剂组成的保护涂层的处理方法。BaiMQ等在PPS纤维表面涂覆聚苯并恶嗪(PBA),提高了其抗氧化性能。这是因为PBA的交联大分子结构具有屏蔽作用,有效改善PPS纤维的抗氧化性能。但该方法存在表面涂层不均匀和难去除等问题,限制了其应用范围。
添加纳米材料是目前PPS抗氧化性能改性使用多的方法。在加工过程中添加抗氧化剂也可以提高PPS的抗氧化性能。有机抗氧化剂的耐热性差,将无机纳米材料和有机抗氧化剂结合,可以提高抗氧化剂的耐热性。
Torelina™A310MX04 东丽PPS/玻璃纤维+无机填充物增强 高填充, 标准等级
PPS特材应用场景:电子油泵
具体应用:油泵端盖、油泵壳体、电机定子
电子油泵作为新能源汽车电驱动技术的核心产品,主要用于驱动电机系统的冷却,满足混动汽车和纯电动汽车更的温度控制需求。
电子油泵PPS材料解决方案,需要满足电子油泵耐高低温,耐化学腐蚀,耐水解、高尺寸稳定性等性能要求。
总结
综上,PPS由于具有优良的耐高温、耐腐蚀、耐辐射、阻燃、均衡的物理机械性能和的尺寸稳定性以及优良的电性能等特点,被广泛用作结构性高分子材料,在新能源汽车等领域获得成功应用。