聊城冠县停车场车牌识别系统,车牌自动识别抓拍系统
-
面议
避免收费漏洞风险:有了车牌识别系统道闸一体机后,系统不以IC卡为收费介质,能够有效制止换卡、一卡多用等停车场普遍存在的逃费手段。同时,系统具备严密的收费解缴、收费稽核管理体系,能大程度的避免各种人为原因导致的收费漏洞,停车费的足额,如实收取。
节能减排、低碳环保:通过车牌识别一体机的快速车牌识别,车辆进出无需频繁刹车起步,减少碳排放量和车辆的损耗,降低PM2.5,共同创造绿色中国。
车牌识别系统的字符分割
定位出车牌区域后,由于并不知道车牌中总共有几个字符、字符间的位置关系、每个字符的宽高等信息,所以,为了车牌类型匹配和字符识别正确,字符分割是的一步。字符分割的主要思路是,基于车牌的二值化结果或边缘提取结果,利用字符的结构特征、字符间的相似性、字符间间隔等信息,一方面把单个字符分别提取出来,也包括粘连和断裂字符等特殊情况的处理;另一方面把宽、高相似的字符归为一类从而去除车牌边框以及一些小的噪声。一般采用的算法有:连通域分析、投影分析,字符聚类和模板匹配等。污损车牌和光照不均造成的模糊车牌仍是字符分割算法所面对的挑战,有待更好的算法出现并解决以上问题。
车牌识别系统的字符识别
对分割后的字符的灰度图像进行归一化处理,特征提取,然后经过机器学习或与字符数据库模板进行匹配,后选取匹配度的结果作为识别结果。目前比较流行的字符识别算法有:模板匹配法、人工神经网络法、支持向量机法和Adaboost分类法等。模板匹配法的优点是识别速度快、方法简单,缺点是对断裂、污损等情况的处理有一些困难;人工神经网络法学习能力强、适应性强、分类能力强但比较耗时;支持向量机法对于未见过的测试样本具有更好的识别能力且需要较少的训练样本;Adaboost分类法能侧重于比较重要的训练数据,识别速度快、实时性较高。我国车牌由汉字、英文字母和阿拉伯数字3种字符组成,且具有统一的样式,这也是识别过程的方便之处。但由于车牌很容易受外在环境的影响,出现模糊、断裂、污损字符的情况,如何提高这类字符和易混淆字符的识别率,也是字符识别的难点之一。易混淆字符包括:0与D、0与Q、2与Z、8与B、5与S、6与G、4与A等。
车牌识别系统的车牌识别结果输出:将车牌识别结果以文本格式输出,包括车牌号,车牌颜色,车牌类型等。车牌识别系统作为停车场运作和城市交通管理领域的智能化工具,具备许多特的功能特点。
随着人工智能和大数据技术的不断发展,车牌识别系统将进一步完善与创新,比如与深度学习和神经网络等技术结合,能进一步提高识别的准确性和鲁棒性。