商品详情大图

沂水废气处理活性炭如何选购-普通型号

及时发货 交易保障 卖家承担邮费

商品详情

山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。 临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。
地址:山东临朐县冶源镇西圈村

废气处理活性炭制造与应用技术
.玻璃碳
玻璃碳(glass-like carbon,简称GC)的结构模型含有闭壳的微孔,电导率高、力学性能好,但透气率低。文越华等[61]认为若想将玻璃碳的全部闭孔打开,使其整体呈纳米级的开孔结构。则比表面积将有很大的提高,有望成为较理想的高功率电容电极碳材料。文越华等提出了新型的纳米孔玻璃碳制备方法是以酚醛树脂为原料,加入固化剂在250℃以下固化交联,调节固化温度以形成具有一定的交联度而又保持较高挥发分的固化物。然后研磨成粉,适当加压成型使压制体的颗粒之间留有一定的孔隙,炭化时挥发分易于扩散排出,应力作用大为减弱。因此,可快速升温进一步固化和炭化,并可使活化气体能够渗入体相,活化反应物也能扩散出来,从而制备出整体均被活化的纳米孔玻璃碳,用作电化学电容器的电极材料性能良好。
竹炭基活性炭
刘洪波等[62]探讨了竹炭基高比表面积活性炭作EDLC电极的充放电特性及其比电容与各种因素的关系。对炭化温度、碱/炭比、活化温度、活性炭收率与性能的影响及比电容与比表面和孔结构的关系、EDLC的充放电特性进行了实验研究,研究结果表明:控制适宜的炭化、活化工艺条件可制得双电极比电容达55F/g的竹炭基高比表面活性炭。由它组装的EDLC具有良好的充放电性能和循环性能。但是内阻过高,大电流下充放电时电容量下降过大。其特点:具有容量大、体积小、充放电简单快速、使用温度范围宽、电压保持性好、充放电次数不受限制等[63]。
碳纳米管是由石墨的碳原子层卷曲而成,是由单层或多层石墨卷成的无缝管状壳层结构,具有很大的比表面积,管径在0.4~100nm范围内。碳纳米管用于EDLC电极材料具有比活性炭高很多的比表面利用率。有报道显示基于碳纳米管薄膜电极的比表面积为430m/g时比容达到45F/g,理论上在清洁石墨表面的双电容量为20μF/cm²,以此推算碳纳米管电极的电容量达到理论 EDLC的57%,而活性炭电极2nm以下的孔对EDLC基本上没有贡献,从而限制了其电容量,所以对碳纳米管来说,由于孔隙形成,其孔径在2~5nm之间。


废气处理活性炭也是双电层电容器(EDLC)使用多的电材料、早在1954年就有了以感世安猫于EDLC电级获得的专件)
一般认为、柱形多孔活性炭的比表面积越大、其比容就越高、通常认为用大比表面积的电级材料来获得高比容量,因为EDLC主要靠电解液进入活性炭的孔隙形成双电装存储电荷、一般认为水溶液中锻材料中2nm的孔对形成双电层比胶利、如小干2mm 以下的孔则很少有双电层形成:对非水电解液则该孔径为Smm、因为孔经过小时电解质溶液很难进入并浸涧这些微孔。因此这些微孔所时应的装面积就成为无效表面积、所以需要对活性炭的孔径和比表面选择一个佳范围值,用以提高中孔的含量,充分利用有效表面积、从而增大电极
自20世纪70 年代以来,人们为了获得高比容量的AC电极材料进行了大量的工作,目前用氢氧化钾溶液活化的AC电极比容量高可达 400F/g*).张宝宝等采用 Co”真空浸溃、碱性处理的方法对 AC电极进行了修饰,结果麦明修饰后的AC 电极比容量提高了26.80%,电容器经1000次循环,电容量价保持在91N以上。且该电容器漏电电流较小,其原因是Co修饰后的AC不仅产生服电脑电、还产生氧化还原反应的法拉第准电容,是Co和AC协简作用的结果,邓梅根等的实验表明,用比表面积为2000m/g、孔径在2~2m的活性炭在水系和非水电解质中获得280F/g和120F/g的比容。这是目前活性碳材料所能达到的大比容
2炭凝胶
发凝胶(carbon scrogel)是一种质轻、比表面积大、中孔发达、导电性好、电化学性能稳定的碳材料,具有结构可控性。
柱形多孔活性炭等碳材料的储氢,储氢主要利用碳对氢气分子的吸附作用储氢、普通信性炭的储氟密度很低、即使在低温下也不到1%(质量分数)。超级送性安储属始于 20世纪70年代末,是在中低温(77-273K),中高压(1~10MPs)下利用比表面积的活性炭作吸附剂的吸附储氯技术,与其他储氢技术相比,超级活性炭储氢具有经济、储氢量高、解吸快,植环使用寿命长和容易实现规模化生产等优点,是一种植具潜力的储装方注),周理用比表面积高达3000m/g的超级活性炭储氢,在-196℃.3MPs下储氯密度为5%(质量分数),但随着温度的升高,储氢密度降低,室温《MPs下的储氢密度仅0.4%(质量分数)。
①碳纳米纤维储氢,碳纳米纤维具有非常高的储氢密度,白期等用流动强化法制备的碳纳米纤维(直径约100mm)在室温下的储氢密度为10%(质量分数).
③碳纳米管储氢,由于纳米材料研究热潮的带动,以纳米碳材料进行储氢成为研究的热点。碳质储氢材料主要有碳纳米纤维和碳纳米管等几种,均具有优良的储氢性能,国内外对碳纳米管储氢做了大量的研究,成会明学要得在10MPa下单壁碳纳米管的储氢密度为4.2%(质量分数),¥.Ye 等)报道在一293℃、12MPa下碳纳米管的储氢密度为8%(质量分数),P.Chen等[)报道在380℃、常压下碳纳米管的储氢密度达20.0%(质量分数)。
④ 纳米石墨储氢。纳米石墨储氢近年来也取得了较大的进展,S.Orimo等[1]在1MPa氢气气氛中用机械球磨法制备的纳米石墨粉,储氢密度施球磨时间的延长而增加,当球磨80b后,氢浓度可达7.4%(质量分数),热分析(TDS)出现了2个峰,解吸温度在377~677℃。等用炸药爆法制备了纳米石墨粉,其结构为六方结构,纳米晶平均粒度为1.86~2.61mm,比表面积为500~650m/g,在12MPa压力条件下,储氢密度仅为0.33%~
0.37%(质量分数)。
(2)碳材料储氢机理的研究
①碳纳米管储氢机理。碳纳米管储氢机理研究主要包括氢气在碳纳米管内的吸附性质、氢在碳纳米管中的存在状态、表面势和碳纳米管直径对储氢密度的影响。氢气在常温下的吸附温度和压强都远氢气的临界温度和临界压力(T,-240℃,P,=1.28kPa),是一种超临界状态的吸附,根据吸附务理论。在纳米孔中由于分子力场的相互叠加形成宽而深的劳阱,即使压力非常低,吸附质氢气分子也很容易进入势阱中,并以分子簇的形式存在。

山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。 临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。
废气处理活性炭在回转炉内的滞留时间可以通过回转速度来调节。对于外热式回转炉而言,由于耐热金属的原因,温度的调节范围比较窄。对于内热式回转炉,由于受炉内再生气体的组成与流速的限制,通入的水蒸气量也有一定的限制。因此,关于活性炭性能的恢复状况问题要根据回转炉的实际情况,用改变加料量等方法进行调节。
为了防止再生尾气的二次污染,对尾气进行一定的处理。虽然原则上要根据活性炭上所吸附的有机物质的种类来决定处理方式,但一般由于尾气中可能造成大气污染的主要成分为吸附质自身或者是吸附质分解所产生的焦油等以及粉化的活性炭,因此采用设置二次燃烧室的方法即可将这些污染成分除去90%以上。除设置二次燃烧室以外,也有设置湿式洗涤器来除去烟尘的方法,但是当烟气中含有某些含氮有机物的时候即难以将气味除去。在对尾气的处理中要考虑吸附物质分解、燃烧时生成的SO.及NO,等问题,同时二次燃烧室应具有良好的保温功能,以便让烟尘及臭气达到完全燃烧。

超临界水是指气压和温度达到一定值时,因高温而膨胀的水的密度和因高压而被压缩的水蒸气的密度正好相同时的水。此时液态水和气态水没有区别,完全交融在一起,成为一种新的呈现高压高温状态的液体。超临界水具有很强的反应活性和广泛的融合能力。西班牙学者Salvador等用超临界状态水(T。374℃,p.=22.1MPa)取代水蒸气对木炭、煤、果壳等原料进行了活化处理,发现超临界水的活化效果优于水蒸气,例如反应速率提升,活化更均匀[4)。然而超临界水与碳反应的动力学、反应选择性及造孔机理等到目前为止均未有深入的研究,蔡琼等以酚醛树脂为原料,对比了超临界水和水蒸气活化效果,实验结果表明超临界水活化利于中孔的大量形成,而水蒸气则利于微

活性炭是由含炭为主的物质作原料,经高温炭化和活化制得的疏水性吸附剂。活性炭含有大量微孔,具有无比的表面积,能有效地去除色度、臭味,可去除二级出水中大多数有机污染物和某些无机物,包含某些有毒的重金属。
活性炭的原理
1、过滤原理
活性炭过滤器是将水中悬浮状态的污染物进行截留的过程,被截留的悬浮物充塞于活性炭间的空隙。滤层孔隙尺度以及孔隙率的大小,随活性炭料粒度的加大而增大。即活性炭粒度越粗,可容纳悬浮物的空间越大。其表现为过滤能力增强,纳污能力增加,截污量增大。同时,活性炭滤层孔隙越大,水中悬浮物越能被更深地输送至下一层活性炭滤层,在有足够保护厚度的条件下,悬浮物可以更多地被截留,使中下层滤层更好地发挥截留作用,机组截污量增加。
从严格的理论上讲,活性炭所具有的对悬浮物的截留能力来自活性炭所提供的表面积。流速低时,机组的过滤能力主要地来自活性炭的筛除作用,而流速快时,过滤能力来自活性炭颗粒表面的吸附作用,在过滤过程中活性炭所提供的颗粒表面积越大,对水中悬浮物的附着力越强。
2、吸附原理
根据吸附过程中活性炭分子和污染物分子之间作用力的不同,可将吸附分为两大类:物理吸附和化学吸附(又称活性吸附)。在吸附过程中,当活性炭分子和污染物分子之间的作用力是范德华力(或静电引力)时称为物理吸附;当活性炭分子和污染物分 子之间的作用力是化学键时称为化学吸附。物理吸附的吸附强度主要与活性炭的物理性质有关,与活性炭的化学性质基本无关。由于范德华力较弱,对污染物分子的结构影响不大,这种力与分子间内聚力一样,故可把物理吸附类比为凝聚现象。物理吸附时污染物的化学性质仍然保持不变。
由于化学键强,对污染物分子的结构影响较大,故可把化学吸附看做化学反应,是污染物与活性炭间化学作用的结果。化学吸附一般包含电子对共享或电子转移,而不是简单的微扰或弱极化作用,是不可逆的化学反应过程。物理吸附和化学吸附的根本区别在于产生吸附键的作用力。
吸附过程是污染物分子被吸附到固体表面的过程,分子的自由能会降低,因此,吸附过程是放热过程,所放出的热称为该污染物在此固体表面上的吸附热。由于物理吸附和化学吸附的作用力不同,它们在吸附热、吸附速率、吸附活化能、吸附温度、选择性、吸附层数和吸附光谱等方面表现出一定的差异。
活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史。20世纪70年代开始用于工业废水处理。生产实践表明,活性炭对水中微量有机污染物具有的吸附性,它对纺织印染、染料化工、食品加工和有机化工等工业废水都有良好的吸附效果。一般情况下,对废水中以BOD、COD等综合指标表示的有机物,如合成染料、表面性剂、酚类、苯类、有机氯、农药和石油化工产品等,都有特的去除能力。所以,活性炭吸附法已逐步成为工业废水二级或三级处理的主要方法之一。
吸附是一种物质附着在另一种物质表面上的缓慢作用过程。吸附是一种界面现象,其与表面张力、表面能的变化有关。引起吸附的推动能力有两种,一种是溶剂水对疏水物质的排斥力,另一种是固体对溶质的亲和吸引力。废水处理中的吸附,多数是这两种力综合作用的结果。活性炭的比表面积和孔隙结构直接影响其吸附能力,在选择活性炭时,应根据废水的水质通过试验确定。对印染废水宜选择过渡孔发达的炭种。此外,灰分也有影响,灰分愈小,吸附性能愈好;吸附质分子的大小与炭孔隙直径愈接近,愈容易被吸附;吸附质浓度对活性炭吸附量也有影响。在一定浓度范围内,吸附量是随吸附质浓度的增大而增加的。另外,水温和pH值也有影响

下一条:胶州褐白煤活性炭厂家-原料精制无烟煤
临朐海源活性炭厂为你提供的“沂水废气处理活性炭如何选购-普通型号”详细介绍
临朐海源活性炭厂
主营:活性炭,蜂窝活性炭,柱状活性炭,粉末活性炭
联系卖家 进入商铺

沂水废气处理活性炭信息

最新信息推荐

进店 拨打电话 微信