商品详情大图

临沂沂南废气处理活性炭-厂家-普通型号

及时发货 交易保障 卖家承担邮费

商品详情

山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。 临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。
地址:山东临朐县冶源镇西圈村

废气处理活性炭制造与应用技术
.玻璃碳
玻璃碳(glass-like carbon,简称GC)的结构模型含有闭壳的微孔,电导率高、力学性能好,但透气率低。文越华等[61]认为若想将玻璃碳的全部闭孔打开,使其整体呈纳米级的开孔结构。则比表面积将有很大的提高,有望成为较理想的高功率电容电极碳材料。文越华等提出了新型的纳米孔玻璃碳制备方法是以酚醛树脂为原料,加入固化剂在250℃以下固化交联,调节固化温度以形成具有一定的交联度而又保持较高挥发分的固化物。然后研磨成粉,适当加压成型使压制体的颗粒之间留有一定的孔隙,炭化时挥发分易于扩散排出,应力作用大为减弱。因此,可快速升温进一步固化和炭化,并可使活化气体能够渗入体相,活化反应物也能扩散出来,从而制备出整体均被活化的纳米孔玻璃碳,用作电化学电容器的电极材料性能良好。
竹炭基活性炭
刘洪波等[62]探讨了竹炭基高比表面积活性炭作EDLC电极的充放电特性及其比电容与各种因素的关系。对炭化温度、碱/炭比、活化温度、活性炭收率与性能的影响及比电容与比表面和孔结构的关系、EDLC的充放电特性进行了实验研究,研究结果表明:控制适宜的炭化、活化工艺条件可制得双电极比电容达55F/g的竹炭基高比表面活性炭。由它组装的EDLC具有良好的充放电性能和循环性能。但是内阻过高,大电流下充放电时电容量下降过大。其特点:具有容量大、体积小、充放电简单快速、使用温度范围宽、电压保持性好、充放电次数不受限制等[63]。
碳纳米管是由石墨的碳原子层卷曲而成,是由单层或多层石墨卷成的无缝管状壳层结构,具有很大的比表面积,管径在0.4~100nm范围内。碳纳米管用于EDLC电极材料具有比活性炭高很多的比表面利用率。有报道显示基于碳纳米管薄膜电极的比表面积为430m/g时比容达到45F/g,理论上在清洁石墨表面的双电容量为20μF/cm²,以此推算碳纳米管电极的电容量达到理论 EDLC的57%,而活性炭电极2nm以下的孔对EDLC基本上没有贡献,从而限制了其电容量,所以对碳纳米管来说,由于孔隙形成,其孔径在2~5nm之间。


废气处理活性炭也是双电层电容器(EDLC)使用多的电材料、早在1954年就有了以感世安猫于EDLC电级获得的专件)
一般认为、柱形多孔活性炭的比表面积越大、其比容就越高、通常认为用大比表面积的电级材料来获得高比容量,因为EDLC主要靠电解液进入活性炭的孔隙形成双电装存储电荷、一般认为水溶液中锻材料中2nm的孔对形成双电层比胶利、如小干2mm 以下的孔则很少有双电层形成:对非水电解液则该孔径为Smm、因为孔经过小时电解质溶液很难进入并浸涧这些微孔。因此这些微孔所时应的装面积就成为无效表面积、所以需要对活性炭的孔径和比表面选择一个佳范围值,用以提高中孔的含量,充分利用有效表面积、从而增大电极
自20世纪70 年代以来,人们为了获得高比容量的AC电极材料进行了大量的工作,目前用氢氧化钾溶液活化的AC电极比容量高可达 400F/g*).张宝宝等采用 Co”真空浸溃、碱性处理的方法对 AC电极进行了修饰,结果麦明修饰后的AC 电极比容量提高了26.80%,电容器经1000次循环,电容量价保持在91N以上。且该电容器漏电电流较小,其原因是Co修饰后的AC不仅产生服电脑电、还产生氧化还原反应的法拉第准电容,是Co和AC协简作用的结果,邓梅根等的实验表明,用比表面积为2000m/g、孔径在2~2m的活性炭在水系和非水电解质中获得280F/g和120F/g的比容。这是目前活性碳材料所能达到的大比容
2炭凝胶
发凝胶(carbon scrogel)是一种质轻、比表面积大、中孔发达、导电性好、电化学性能稳定的碳材料,具有结构可控性。
柱形多孔活性炭等碳材料的储氢,储氢主要利用碳对氢气分子的吸附作用储氢、普通信性炭的储氟密度很低、即使在低温下也不到1%(质量分数)。超级送性安储属始于 20世纪70年代末,是在中低温(77-273K),中高压(1~10MPs)下利用比表面积的活性炭作吸附剂的吸附储氯技术,与其他储氢技术相比,超级活性炭储氢具有经济、储氢量高、解吸快,植环使用寿命长和容易实现规模化生产等优点,是一种植具潜力的储装方注),周理用比表面积高达3000m/g的超级活性炭储氢,在-196℃.3MPs下储氯密度为5%(质量分数),但随着温度的升高,储氢密度降低,室温《MPs下的储氢密度仅0.4%(质量分数)。
①碳纳米纤维储氢,碳纳米纤维具有非常高的储氢密度,白期等用流动强化法制备的碳纳米纤维(直径约100mm)在室温下的储氢密度为10%(质量分数).
③碳纳米管储氢,由于纳米材料研究热潮的带动,以纳米碳材料进行储氢成为研究的热点。碳质储氢材料主要有碳纳米纤维和碳纳米管等几种,均具有优良的储氢性能,国内外对碳纳米管储氢做了大量的研究,成会明学要得在10MPa下单壁碳纳米管的储氢密度为4.2%(质量分数),¥.Ye 等)报道在一293℃、12MPa下碳纳米管的储氢密度为8%(质量分数),P.Chen等[)报道在380℃、常压下碳纳米管的储氢密度达20.0%(质量分数)。
④ 纳米石墨储氢。纳米石墨储氢近年来也取得了较大的进展,S.Orimo等[1]在1MPa氢气气氛中用机械球磨法制备的纳米石墨粉,储氢密度施球磨时间的延长而增加,当球磨80b后,氢浓度可达7.4%(质量分数),热分析(TDS)出现了2个峰,解吸温度在377~677℃。等用炸药爆法制备了纳米石墨粉,其结构为六方结构,纳米晶平均粒度为1.86~2.61mm,比表面积为500~650m/g,在12MPa压力条件下,储氢密度仅为0.33%~
0.37%(质量分数)。
(2)碳材料储氢机理的研究
①碳纳米管储氢机理。碳纳米管储氢机理研究主要包括氢气在碳纳米管内的吸附性质、氢在碳纳米管中的存在状态、表面势和碳纳米管直径对储氢密度的影响。氢气在常温下的吸附温度和压强都远氢气的临界温度和临界压力(T,-240℃,P,=1.28kPa),是一种超临界状态的吸附,根据吸附务理论。在纳米孔中由于分子力场的相互叠加形成宽而深的劳阱,即使压力非常低,吸附质氢气分子也很容易进入势阱中,并以分子簇的形式存在。

山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。 临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。
活性炭吸附原理
废气处理活性炭在制备过程中,由于活化剂(水蒸气、氯氧化钾,磷酸等)侵蚀清化作用、产生大量的孔隙结构,这些孔隙结构的形成,增加了活性炭的比表面积,使其具备的吸附能力,活性炭的吸附能力不但与其礼隙结构有关,还与其表面化学性质一一表面的化学官能团、表面杂原子和化合物有关,不同的表面官能团、杂原子和化合物对不同的吸附所有明显的吸附差别。在活化过程中,活性炭的表面会形成大量的羟基,羧基、羰基等含氧表面配合物,不同种类的含氧基团是活性炭的活性位,它们能使活性炭表面呈现微弱的酸性,或性、氧化性、还原性、亲木性和疏水性等,这些构成了活性炭性能的多样性,同时影响活性炭与活性组分的结合能力,一般而言,活性炭表面含氧官能团中的酸性化合物越丰富,吸附极性化合物的效率越高,而碱性化合物较多的活性炭易吸附极性较弱的或非极性的物质。
为了增强活性炭的吸附能力,常常对其进行改性处理,通过化学氧化,还原以及负载等改性方法可使活性炭表面的化学性质发生改变,增加酸碱基团的相对含量可选择吸附极性不同的物质,或通过增加特定的表面杂原子或化合物来增强对特定吸附质的吸附。
废气处理活性炭的特殊功能及室内应用
1.特殊功能
①利用活性炭物理吸附与化学吸附的协同作用,经过孔经调节工艺,使其具备与室内有害气体分子大小相匹配的孔隙结构,完全吸附有害气体而不是遮盖或淡化气味,从根本上清除室内污染,
②活性炭能够对室内所有有害气体分子进行吸附,同时具有调节催化等性能,能够有效地吸附形成空气中各种有害气体与气味的苯系物、卤代烷烃,醛、酮、酸等有机物成分及空气中的浮游细菌,杀灭霉菌、大肠杆菌、金黄色葡萄球菌、脓菌等致病菌,抑制流行性病原的传播,具有去毒、吸味、除臭、去湿、防霉、杀菌、净化等综合功能,如表6-11所示。
③室内环保指出:装饰装修所造成的室内污染,其污染源挥发甲醛、苯、甲苯、氨气、氧等是一个缓慢释放过程,甚至将会持续3~15年,开窗通风法、化学喷除法、花卉去除法等只是迅速遮盖或驱散已挥发的有害气体,而不能根本去除缓慢释放的有害气体,而活性炭的吸附过程是一个长效稳定过程,基本与有害气体的释放过程相吻合,从而达到完全去除的效果。
①活性炭是选用绿色环保的果壳为原料,在加工时没有添加任何化学成分,对人体副作用,同时又可避免喷剂等对家具造成的褪色、潮湿等。

临朐县海源活性炭厂位于山东临朐县冶源镇西圈村,建厂20年来,以活性炭为主业;不断科研投入,产品种类,质量稳定,深受广大客户好评,椰壳活性炭以耶壳为原料,对用水提供安全,我厂生产的净水滤料均符合生活应用水卫生要求。

世界公认:活性炭为"吸附剂"
提示:活性炭吸附法去除室内污染是目前应用广泛、成熟、安全、效果可靠、吸收物质种类多的一种方法。活性炭作为一种优良的物理、化学吸附剂,越来越受到人们的重视。
环保活性炭包能够吸附空气中的甲醛、氨、苯、二甲苯、氡等室内所有有害气体分子,快速消除装修异味,均匀调节空间湿度,对于居室、家具衣橱、书柜、鞋柜、鞋内、冰箱、卫生间、地板、鱼缸、汽车、空调、电脑、办公、宾馆及娱乐场所,都有很好的效果,它是甲醛的克星,杀毒的。
碘值:碘值是活性炭的一个性能差数,果壳,竹炭,煤制的碘值都在几百,活性炭原料碘值从85mg/g等多种,吸附能力也不同!格也不同!同碘值的活性炭也只有椰壳的效果好。
用手掂重量:上面已经介绍过了,要想提高活性炭的吸附性能,只有尽可能多地在活性炭上制造孔隙结构,孔隙越多,活性炭越酥松,相对密度也就会越轻,因此好的活性炭手感上会比较轻,在同等重量包装的情况下,性能好的活性炭会比劣质活性炭体积大许多。

看气泡:将一小把活性炭投入水中,由于水的渗透作用,水会逐渐浸入活性炭的孔隙结构中,迫使孔隙中的空气排出,从而产生一连串的极为细小的气泡,在水中拉出一条细小的气泡线,同时会发出丝丝的气泡声,十分有趣。这种现象发生得越剧烈,持续时间越长,活性炭的吸附性就越好。

看脱色能力:活性炭吸附能力的另一个表现就是脱色能力,活性炭具有能将有色液体变成浅色或无色的神奇能力,这其实就是因为活性炭吸附了有色液体里的色素分子的原因造成的。正因为活性炭的这种特性,被广泛应用于制糖工业领域中红糖变白糖的生产过程中。取两只透明杯子,在一只杯子里放入纯净水,然后滴入一滴红墨水(这里可以用任何一种便于观察但不改变水的性质的色素都可以,例如蓝墨水、打印机彩色墨水,但不能使用墨汁和碳素墨水),搅拌均匀后将一半有色水倒入另一个杯子中留作对比样。将活性炭放入有色水中,数量应达到水的一半或更多,这样效果会比较明显,静置10―20分钟后与对比水样进行对照,在同等条件下,脱色效果越强说明活性炭吸附性越好。

废气处理活性炭虽然在外型和用途方面可以有许多品种,但活性炭有一个共同的特性,那就是“吸附性”。活性炭产生吸附性的原因就是因为它有发达的孔隙结构,就象我们所见到的海绵一样,在同等重量的条件下,海绵比其他物体能吸收更多的水,原因也是因为它具有发达的孔隙结构。但活性炭的这种孔隙结构是肉眼无法看见的,因为他们只有1×10-12mm―10-5mm之间,比一个分子大不了多少。活性炭孔隙发达的程度是难以想象的,若取1克活性炭,将里面所有的孔壁都展开成一个平面,这个面积将达到1000平方米(既比表面积为1000m2/g)!影响活性炭吸附性的主要因素就取决于内部孔隙结构的发达程度。

活性炭是由含炭为主的物质作原料,经高温炭化和活化制得的疏水性吸附剂。活性炭含有大量微孔,具有无比的表面积,能有效地去除色度、臭味,可去除二级出水中大多数有机污染物和某些无机物,包含某些有毒的重金属。
活性炭的原理
1、过滤原理
活性炭过滤器是将水中悬浮状态的污染物进行截留的过程,被截留的悬浮物充塞于活性炭间的空隙。滤层孔隙尺度以及孔隙率的大小,随活性炭料粒度的加大而增大。即活性炭粒度越粗,可容纳悬浮物的空间越大。其表现为过滤能力增强,纳污能力增加,截污量增大。同时,活性炭滤层孔隙越大,水中悬浮物越能被更深地输送至下一层活性炭滤层,在有足够保护厚度的条件下,悬浮物可以更多地被截留,使中下层滤层更好地发挥截留作用,机组截污量增加。
从严格的理论上讲,活性炭所具有的对悬浮物的截留能力来自活性炭所提供的表面积。流速低时,机组的过滤能力主要地来自活性炭的筛除作用,而流速快时,过滤能力来自活性炭颗粒表面的吸附作用,在过滤过程中活性炭所提供的颗粒表面积越大,对水中悬浮物的附着力越强。
2、吸附原理
根据吸附过程中活性炭分子和污染物分子之间作用力的不同,可将吸附分为两大类:物理吸附和化学吸附(又称活性吸附)。在吸附过程中,当活性炭分子和污染物分子之间的作用力是范德华力(或静电引力)时称为物理吸附;当活性炭分子和污染物分 子之间的作用力是化学键时称为化学吸附。物理吸附的吸附强度主要与活性炭的物理性质有关,与活性炭的化学性质基本无关。由于范德华力较弱,对污染物分子的结构影响不大,这种力与分子间内聚力一样,故可把物理吸附类比为凝聚现象。物理吸附时污染物的化学性质仍然保持不变。
由于化学键强,对污染物分子的结构影响较大,故可把化学吸附看做化学反应,是污染物与活性炭间化学作用的结果。化学吸附一般包含电子对共享或电子转移,而不是简单的微扰或弱极化作用,是不可逆的化学反应过程。物理吸附和化学吸附的根本区别在于产生吸附键的作用力。
吸附过程是污染物分子被吸附到固体表面的过程,分子的自由能会降低,因此,吸附过程是放热过程,所放出的热称为该污染物在此固体表面上的吸附热。由于物理吸附和化学吸附的作用力不同,它们在吸附热、吸附速率、吸附活化能、吸附温度、选择性、吸附层数和吸附光谱等方面表现出一定的差异。
活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史。20世纪70年代开始用于工业废水处理。生产实践表明,活性炭对水中微量有机污染物具有的吸附性,它对纺织印染、染料化工、食品加工和有机化工等工业废水都有良好的吸附效果。一般情况下,对废水中以BOD、COD等综合指标表示的有机物,如合成染料、表面性剂、酚类、苯类、有机氯、农药和石油化工产品等,都有特的去除能力。所以,活性炭吸附法已逐步成为工业废水二级或三级处理的主要方法之一。
吸附是一种物质附着在另一种物质表面上的缓慢作用过程。吸附是一种界面现象,其与表面张力、表面能的变化有关。引起吸附的推动能力有两种,一种是溶剂水对疏水物质的排斥力,另一种是固体对溶质的亲和吸引力。废水处理中的吸附,多数是这两种力综合作用的结果。活性炭的比表面积和孔隙结构直接影响其吸附能力,在选择活性炭时,应根据废水的水质通过试验确定。对印染废水宜选择过渡孔发达的炭种。此外,灰分也有影响,灰分愈小,吸附性能愈好;吸附质分子的大小与炭孔隙直径愈接近,愈容易被吸附;吸附质浓度对活性炭吸附量也有影响。在一定浓度范围内,吸附量是随吸附质浓度的增大而增加的。另外,水温和pH值也有影响

废气处理活性炭在有机合成中的作用主要有脱色、吸附和助滤,通常在活性炭的一次操作过程中,主要表现其中一个方面,其它方面的作用是次要的。
活性炭常见的作用是脱色,根据与极性分析,活性炭可以视为非极性物质,可以用来吸附非极性和小极性色素,适合在大极性溶剂中使用。物质中含有的色素大多属于非极性或小极性色素,所以在常用脱色剂中常用的就是活性炭,常用的溶剂是水和醇类。一般在需要脱色时,不需要考虑色素的极性,直接以活性炭脱色,通过观察溶液在脱色前后的变化来判断脱色效果。
一般的操作过程如下:
待脱色物质加入到一定量溶剂中,加热全溶,加入一定量活性炭,搅拌一段时间,热滤,滤液浓缩。待脱色物质为含有可见色素的固体或液体,以固体居多;溶剂量一般为3-10倍,太少不易操作,在热滤时损失大;太多成本过高,也没有必要;溶剂一般为大极性溶剂,甲醇、乙醇和水等,如果脱色后需要结晶,一般需要筛选出适合的溶剂;活性炭加入量一般为溶质(即待脱色物质)的5-10%,视情况可以增减;搅拌时间一般在30分钟到2小时不等,视情况可以增减;滤液视情况处理,如果脱色前后外观颜色变化不大,可以再加活性炭重复脱色;如果需要重结晶,直接冷却结晶或适当浓缩后冷却结晶;如果待脱色物质是液体,一般浓缩至干。
这里的杂质主要指不溶物,如无机盐、灰尘和物理杂质等,活性炭脱色其实也属于除杂,只是脱色除的是有机可见光吸收杂质。除杂的过程非常简单,和脱色过程类似,全溶后加活性炭搅拌后直接过滤,浓缩。单纯除杂其实可以不加活性炭,直接全溶过滤即可,加活性炭主要是利用其有助滤的作用,对过滤有利。
吸附主要针对焦油和粘性杂质,这一类物质如果不加活性炭,直接过滤则堵塞过滤介质,以活性炭吸附后一般作用明显。主要利用吸附作用时,活性炭可以用硅胶或硅藻土代替,区别不大。通常在活性炭的使用过程中,活性炭同时表现出脱色、除杂和吸附三种作用,有色杂质进入活性炭分子内部,焦油和粘性杂质存在于活性炭颗粒之间,在过滤时活性炭助滤了不溶杂质的过滤过程。三种作用不可割裂来看。
活性炭在有机合成中的作用其实很简单,但活性炭的使用中经常出现其它问题。常见的问题有:
活性炭脱色效果不佳,多次脱色后滤液颜色仍较重;活性炭脱色损失大,脱色一次损失10%以上;活性炭穿透滤纸滤布,产品中含有少量活性炭;加活性炭过滤时过滤很慢,总堵滤纸滤布;用完活性炭后的反应釜非常难洗,怎么洗都洗不干净;
活性炭脱色效果不佳通常与色素的极性有关,同一种脱色剂不可能适用所有的色素;脱色损失大,一般是由于产品在活性炭上吸附过大有关;活性炭穿透滤纸滤布,主要原因是活性炭型号选择有误;堵塞滤纸滤布除与活性炭型号有关外,还与不溶物粒度有关;至于反应釜难洗,与活性炭本身性质有关。

为了净化空气进行了大量研究,其中以活性炭为过滤吸附材料的研究应用也较广,活性炭容易清除单质碘蒸气,而甲基碘因具有较高蒸气压力,难以吸附。因此利用浸清活性炭在同位素交换或化学结合过程予以净化是当前较为满意的解决办法。
同位素交换利用的是没有放射性和不挥发的无机碘化物浸溃的活性炭,在放射性甲基碘于炭料层中短暂的停留时间内,在吸附剂上发生碘问位素的交换,因此由于无放射性碘的大量过剩,所以可达到良好的交换效率。
过滤装置是在相对湿度为99%~条件下,能净化程度大于99%的、炭层长度不小于20cm矩形截面的、特殊结构的过滤器。为了预先防止放射性炭尘埃的放出,悬浮微粒过滤器可设置在用活性炭制成的过滤器之后,在原子能发电站中空气不断的经过活性炭过滤器而循环。因为在这种情况下,浸溃活性炭的吸附能力由于吸收了在过滤器操作期间内严格控制的有机蒸气而有所降低。
化学结合是在利用叔胺浸溃的活性炭时,甲基碘可与其化合而生成季铵盐,它与其他胺相比具有较小的挥发性和较强的碱性而显得特别有效。然而胺易挥发,并降低活性炭的燃点温度,因此,像这样的浸溃组成在许多国家均不使用。
淄博活性炭经筛选以2%TEDA(三亚乙基二胺)和2%K1浸溃的油棕炭制成活性炭,与复旦大学和上海原子核研究所合作研究应用,结果说明该浸溃活性炭可用作核电站中除碘过滤器的吸附材料。
(2)放射性稀有气体水反应堆废气中含有极少量的长衰期的同位素氪,主要是含短衰期的同位素氪和氙。在吸附剂上长时间以大浓度保留这些稀有气体是不可能的。然而,如果在装有活性炭的一个吸附器中的持留时间与同位素


恶臭是空气中的异味物质刺激嗅觉器官而引起不愉快和损害生活环境的污染物,污染源来自含硫等烃类化合物,常出现在饲料厂。皮革厂、纸浆厂。化工厂、垃圾污水处理厂、水产加工厂、农场等。通常把正常勉强能感觉到的臭味浓度称为嗅觉的阈值,臭味灵敏度因人而异,与臭味阈值的资料常不相同。一股臭味强度以嗅觉阈值分为六级。
我国在《恶臭污染物排放标准》(GB14554-1993)中对八种恶臭污染物规定了一项大排放限值:氨、二甲胺、硫化氢、甲硫醇、甲硫醚,二甲二硫,二硫化碳、苯乙烯。
恶臭的治理方法因臭气性质而异,有用水、酸或碱的吸收法。有直接燃烧脱臭法或催化燃烧脱臭法,有活性炭脱臭法。对低浓度的恶臭气体的处理,通常采用活性炭脱臭法,效果良好。活性炭品种型号的选择,应经实验室试验其吸附能力、吸附速度、机械强度、再生难易、价格高低而定。针对恶臭的性质,可以对活性炭进行定向处理,提高其使用效果;吸附温度控制在40℃以下为宜,以利提高吸附效果。
将活性炭和活性氢化铝、二氧化硅、沸石和(或)重金属,再加黏结剂组成的制品,可有效地除去空气中臭味、细菌和真菌孢子,适用于冰箱、冷冻器等。将0.1%~20%铁、铬、镍、钴、锰、锌、铜、镁的氧化物和(或)钙载在100份的活性炭上,经水蒸气的气氛下加热处理,再以有机黏结剂成型。这种蜂窝状活性炭具有高的催化氧化活性和低的压力损耗,适用于作冰箱、厕所和空气净化器中的防臭剂,可迅速去除低浓度的甲硫醇或胺等臭味物质。蜂窝状活性炭也可用于处理空气中臭气的过滤器,通过颗粒活性炭和酚醛树脂黏结剂制成的吸附剂在多层床中的过滤作用,密闭室内或厕所里的臭味可有效地脱除。将活性炭层夹入两片透气片中成为三明治式结构的除臭片。透气片之一以阳离子去臭剂浸渍,透气片之二以阴离子去臭剂浸渍,除臭效率更大。以旋转混合装置将有臭气的空气与活性炭、吸附剂接触,再以微波辐射装置处理用过的废炭,会有臭氧的催化分解装置处理被吸附杂质。11.治理放射性气体和蒸气

活性炭用于“三苯”废气吸附净化,有三种工艺:
一是活性炭吸附脱附回收。活性炭吸附一定量污染物后,用水蒸气进行脱附,并进行冷凝分离,回收溶剂。该工艺适合处理单一组分废气,但投资较大,不适于小厂使用。
二是活性炭吸附催化燃烧。活性炭吸附污染物后,用热风解吸,解吸下来的污染物采取催化燃烧。该工艺适合处理大风量有机废气,无二次污染,自动控制能力高。但由于活性炭层厚,容易因为热量堆积引发自燃,安全性差。
三是活性炭分散吸附、集中再生。适用于废气排放点多、面广、规模小、资金少的厂家。吸附器结构设计是关键,该设备外形是环形,占地面积小,主要是考虑到颗粒活性炭层厚度、气流分布、阻力处理能力、活性炭的装卸更换。再生全过程是在活化炉内预热、脱附、煅烧活化和炉内废气燃烧及冷却出料。这种活性炭净化废气装置已有许多小型厂投入使用。
活性炭吸附法工艺过程包括:活性炭吸附废气中的“三苯”溶剂;吸附饱和后的活性炭脱附和溶剂回收;活性炭活化再生。用活性炭回收苯类溶剂,一般在常温下吸附,以蒸汽在110℃以下解吸,冷凝分离回收。例如,天津石油化纤厂回收对二甲苯,西安石棉制品厂回收汽油和苯。合成纤维厂的废气中有对苯二甲酸二甲酯装置的氧化尾气主要含对二甲苯,采用活性炭立式吸附器,将氧化尾气通过后经冷却分离,回收对二甲苯。活性炭饱和后用热空气再生。脱附的有机物送入焚烧炉焚燃,效果好。成本高。

下一条:金华无烟煤滤料生产厂家-净水滤料
临朐海源活性炭厂为你提供的“临沂沂南废气处理活性炭-厂家-普通型号”详细介绍
临朐海源活性炭厂
主营:活性炭,蜂窝活性炭,柱状活性炭,粉末活性炭
联系卖家 进入商铺

沂南废气处理活性炭信息

最新信息推荐

进店 拨打电话 微信