PCB
-
面议
PCB多层板解析
多层板的定义:
PCB多层板是指用于电器产品中的多层线路板,多层板用上了更多单面板或双面板的布线板。用一块双面作内层、二块单面作外层或二块双面作内层、二块单面作外层的印刷线路板,通过定位系统及绝缘粘结材料交替在一起且导电图形按设计要求进行互连的印刷线路板就成为四层、六层印刷电路板了,也称为多层印刷线路板。
随着SMT(表面安装技术)的不断发展,以及新一代SMD(表面安装器件)的不断推出,如QFP、QFN、CSP、BGA(特别是MBGA),使电子产品更加智能化、小型化,因而推动了PCB工业技术的重大改革和进步。自1991年IBM公司成功开发出高密度多层板(SLC)以来,各国各大集团也相继开发出各种各样的高密度互连(HDI)微孔板。这些加工技术的迅猛发展,促使了PCB的设计已逐渐向多层、高密度布线的方向发展。多层印制板以其设计灵活、稳定可靠的电气性能和的经济性能,现已广泛应用于电子产品的生产制造中。
PCB多层板与单面板、双面板大的不同就是增加了内部电源层(保持内电层)和接地层,电源和地线网络主要在电源层上布线。但是,多层板布线主要还是以顶层和底层为主,以中间布线层为辅。因此,多层板的设计与双面板的设计方法基本相同,其关键在于如何优化内电层的布线,使电路板的布线更合理,电磁兼容性更好。
多层板的结构:
层压,顾名思义,就是把各层线路薄板粘合成一个整体的工艺。其整个过程,包括吻压、全压、冷压。在吻压阶段,树脂浸润粘合面并填充线路中的空隙,然后进入全压,把所有的空隙粘合。所谓冷压,就是使线路板快速冷却,并使尺寸保持稳定。
层压工艺需要注意的事项,在设计上,符合层压要求的内层芯板,主要是厚度、外形尺寸、的定位孔等,需要按照具体的要求进行设计,总体上内层芯板要求无开、短、断路,无氧化,无残留膜。
其次,多层板层压时,需对内层芯板进行处理,处理的工艺有黑氧化处理和棕化处理。氧化处理是在内层铜箔上形成一层黑色氧化膜,棕化处理工艺是在内层铜箔上形成一层有机膜。
后,在进行层压时,需要注意温度、压力、时间三大问题。温度,主要是注意树脂的熔融温度和固化温度、热盘设定温度、材料实际温度及升温的速度变化等,这些参数都需要注意。至于压力方面,以树脂填充层间空洞,排尽层间气体和挥发物为基本原则。时间参数,主要是加压时机的控制、升温时机的控制、凝胶时间等方面。
多层板进行阻抗、层叠设计考虑的基本原则有哪些?
在进行阻抗、层叠设计的时候,主要的依据就是PCB板厚、层数、阻抗值要求、电流的大小、信号完整性、电源完整性等,一般参考的原则如下:
叠层具有对称性;
l 阻抗具有连续性;
l 元器件面下面参考层尽量是完整的地或者电源(一般是第二层或者倒数第二层);
l 电源平面与地平面紧耦合;
l 信号层尽量靠近参考平面层;
l 两个相邻的信号层之间尽量拉大间距。走线为正交;
l 信号上下两个参考层为地和电源,尽量拉近信号层与地层的距离;
l 差分信号的间距≤2倍的线宽;
l 板层之间的半固化片≤3张;
l 次外层至少有一张7628或者2116或者3313;
l 半固化片使用顺序7628→2116→3313→1080→106。
pcb多层板的优劣势是什么?
PCB多层板有什么优点,又有什么缺点呢?今天就为大家解释一下吧!
如果将PCB单面板和PCB多层板相比,先不讨论其内部质量如何,我们都可以通过表面看到差异。这些差异对于PCB在整个使用寿命内的耐久性和功能性非常重要。PCB多层板的主要优点:这种电路板具有抗氧化性。多样的结构、高密度、表面涂层技术,确保电路板的质量和安全,可以安全使用。以下是高可靠性多层板的重要特点,即PCB多层板的优缺点:
1.PCB多层板孔壁铜厚度为正常是25微米。
优点:增强的可靠性,包括改善的z轴扩展阻力。
缺点:但也存在着一定的风险:在实际使用的情况下,在吹出或脱气,组装过程中的电连接性(内层分离,孔壁破裂)或在负载条件下发生故障的可能性的问题。IPC Class2(大多数工厂的标准)要求PCB多层板镀铜少于20%。
2.无焊接修复或开路修复 。
优点:的电路确保可靠性和安全性,无需维护,无风险。
缺点:如果维修不当,PCB多层板是开放的。即使适当固定,在负载条件(振动等)下也可能存在故障的风险,这可能导致实际使用中的故障。
3.超出IPC规范的清洁度要求。
优点:提高PCB多层板清洁度可提高可靠性。
风险:接线板上的残留物,焊料的积聚会给防焊层带来风险,离子残留物会导致焊接表面被腐蚀和污染的风险,这可能导致可靠性问题(差焊接点/电气故障)并终增加实际故障发生的概率。
4.严格控制每个表面处理的使用寿命。
优点:焊接,可靠性和降低水分侵入的风险。
风险:是旧PCB多层板的表面处理可能导致金相变化,可能会有焊锡性问题,而水分侵入可能导致组装过程中的问题或分层的实际使用,内壁和壁壁的分离(开路)等。
无论是在制造组装流程还是在实际使用中,PCB多层板都要具有可靠的性能,当然这个跟PCB打板工厂的设备、工艺技术水平都有一定的关联。
PCB多层板和堆叠规则
1、每个PCB都需要良好的基础:组装说明
PCB的基础方面包括介电材料,铜和走线尺寸以及机械层或尺寸层。用作电介质的材料为PCB提供了两个基本功能。当我们构建能够处理高速信号的复杂PCB时,介电材料会隔离在PCB相邻层上发现的信号。PCB的稳定性取决于整个平面上电介质的一致阻抗以及在宽频率范围内的一致阻抗。
尽管看起来铜作为导体很明显,但还存在其他功能。铜的不同重量和厚度会影响电路实现正确电流量和定义损耗量的能力。就接地层和电源层而言,铜层的质量会影响接地层的阻抗和电源层的热导率。使差分信号对的厚度和长度相匹配可以巩固电路的稳定性和完整性,尤其是对于高频信号而言。
物理尺寸线、尺寸标记、数据表、切口信息、通孔信息、工具信息和组装说明不仅描述了机械层或尺寸层,而且还充当了PCB基础的度量。组装信息控制电子部件的安装和位置。由于“印制电路组装”过程将功能组件连接到PCB上的走线,因此组装过程要求设计团队专注于信号管理、热管理、焊盘放置、电气和机械组装规则之间的关系,以及组件的物理安装符合机械要求。
每个PCB设计都需要IPC-2581中的组装文档。其他文件包括物料清单、Gerber数据、CAD数据、示意图、制造图、注释、装配图、任何测试规格、任何质量规格以及所有法规要求。这些文档中包含的准确性和细节减少了设计过程中任何出现错误的机会。
2、遵循的规则:排除和布线层
在房屋中安装电线的电工遵守规则,以确保电线不会出现急剧弯曲或变得易受用于安装石膏板的钉子或螺钉影响。使电线穿过双头螺栓墙需要以一致的方式来确定布线路径的深度和高度。
保持层和布线层为PCB设计建立了相同的约束条件。保持层定义了设计软件的物理约束(例如组件放置或机械间隙)或电气约束(例如布线保持)。布线层建立组件之间的互连。根据PCB的应用和类型,可以在PCB的顶层和底层或内部层中放置布线层。
为接地平面和电源平面寻找空间
每个房屋都有一个主要的电气服务面板或负载中心,可以接收来自公用事业公司的进来的电力,并将电力分配给为灯、插座、电器和设备供电的电路。PCB的接地层和电源层通过将电路接地和将不同的板上电压分配给组件来提供相同的功能。与服务面板一样,电源和接地层可以包含多个铜段,这些铜段允许电路和子电路连接到不同的电位。
保护电路板,保护走线
的房屋油漆工会仔细记录天花板,墙壁和装饰的颜色和饰面。在PCB上,丝网印刷层使用文本来顶层和底层上组件的位置。通过丝网印刷获得信息可以使设计团队免于引用装配文件。
由房屋油漆工施加的底漆,油漆,污渍和清漆可添加引人入胜的颜色和纹理。此外,这些表面处理可以保护表面不致变质。同样,当某种类型的碎屑落在走线上时,PCB上的薄阻焊层可帮助PCB防止走线短路。
3、PCB叠层规则
随着PCB技术的改进和消费者对更快,更强大产品的需求的增加,PCB已从基本的两层板变为具有四,六层以及多达十至三十层的电介质和导体的板。为什么要增加层数?拥有更多的层可以提高电路板分配功率,减少串扰,消除电磁干扰并支持高速信号的能力。用于PCB的层数取决于应用、工作频率、引脚密度和信号层要求。
通过两层堆叠,顶层(即第1层)用作信号层。四层堆叠使用顶层和底层(或第1层和第4层)作为信号层,在此配置中,第2层和第3层用作平面。预浸料层将两个或多个双面板粘合在一起,并充当层之间的电介质。六层PCB增加了两层铜层,第二层和第五层作为平面。第1、3、4和6层承载信号。
继续前进到六层的结构,内层二三(当为双面板)和四五(当为双面板)为芯板层,芯板之间夹半固化片(PP)。由于半固化片材料尚未完全固化,因此材料比芯材柔软。PCB制造过程将热量和压力施加到整个堆叠体上,并使半固化片和纤芯熔化,以便各层可以粘结在一起。
多层板为堆叠增加了更多的铜层和电介质层。在八层PCB中,电介质的七个内部行将四个平面层和四个信号层粘合在一起。十到十二层板增加了电介质层的数量,保留了四个平面层,并增加了信号层的数量。