南通有没有铜合金焊接代加工
-
面议
铜合金的焊接一直以来都是一件非常具有挑战性的工作,采用激光光束振荡技术焊接铜合金,成功实现了铜合金板材的焊接。工艺参数经过优化后可以得到无缺陷的焊接接头。光束振荡造成的多个在熔化循环时形成复杂的熔化区的主要原因。
众所周知,铜及其合金是一种非常难以焊接的材料,其原因如下:铜及其合金的传导率比较高,造成熔化困难,因此大量的热需要用来补偿热消散和局部进行高度加热,结果形成热应力和终造成变形等缺陷。溶解的氧容易形成氧化物和气孔。对激光束的吸收率比较低,尤其是激光波长为700nm以上的时候,吸收率不到3%。
高的旋转直径和旋转频率增加了焊道之间的搭接,导致交互作用时间变短,因此,焊道的穿透能力下降。然而,焊道表面的形态呈现出较少的缺陷,如飞溅和表面空穴。由于焊接工艺不是对称的,这是因为光束旋转的原因造成的,在高速旋转频率的作用下底部存在不饱满。在高的焊接速度下,尽管表面空穴和飞溅减少,但焊接深度显著下降。测试不同的光束运动轨迹后发现,圆形的运动轨迹是效果佳的。
铜及铜合金具有的导电性能和导热性能,可进行软钎焊和其他焊接,但由于铜及铜合金的高熔点和极易氧化性能,致使铜及铜合金的焊接存在以下技术难点
(1)高熔点和高导热性,使铜和铜合金焊接温度很高,采用常规焊接工艺参数时, 铜材很难熔化,不能很好地熔合;
(2)焊接接头的热裂倾向大,焊接时,熔池内铜与其中的杂质形成低熔点共晶物, 使铜及铜合金具有明显的热脆性,产生热裂纹;
(3)铜及铜合金焊接易产生气孔的缺陷,且比碳钢严重得多,主要是氢气孔;
(4)焊接接头性能的变化,晶粒粗化,塑性下降,耐蚀性下降等。
对铜合金进行的焊接加工。铜合金的导热率高,焊接时,从焊缝中心向母材迅速散热,焊缝易形成粗大的树枝晶。同时,焊缝内的合金元素、杂质和氧化亚铜与铜形成的低熔点共晶集中分布在晶界上,严重地削弱了晶间结合力,在焊接应力作用下,易产生热裂。因此,大的工件应进行焊前预热,这对焊接缺陷能起到一定的消除作用。高的导热率对于接头形式和熔化焊接技术有特殊要求,只有在热源与焊接接头呈对称位置时,才能获得均匀的焊缝。铜合金液态流动性好,不适于悬空单面对接焊,也不宜采用立焊和仰焊。
在单道对接焊时应采用垫板。常用垫板材料有:铜、石墨和干石棉等。铜合金焊接时吸气较严重,液态时溶解大量氢,在冷却凝固过程中,由于其溶解度降低,氢来不及逸出,在焊缝和熔合区形成气孔。氢还能与氧化亚铜反应生成水泡,形成另一种气孔。铜合金线膨胀系数较大,焊接时,焊件产生较大变形。
长期以来,铜及铜合金的焊接主要是应用钎焊、气焊、电弧焊、惰性气体保护焊、埋弧焊、扩散焊等方法。近年来,随着焊接技术的发展,又采用了电子束、激光、等离子弧等高能量热源进行焊接,取得了很好的效果。
铜为面心立方晶格,具有较多的形变滑移系,室温、高温变形能力很好,退火状态的铜,不经中间退火可压缩85%~ 95%而不产生裂纹。但纯铜在500~ 600℃呈现“中温脆性”。在焊接过程中,易在此温度区间发生裂纹。据研究,“中温脆性”和杂质的性质、含量、分布、固溶度等有关。铜可分为无氧铜和含有少量氧的纯铜。纯铜的导电性能好,常用于导电材料,但是存在Cu2O-Cu的低熔点共晶物,焊接时易出现裂纹。无氧铜又可分为用P、Mn脱氧的脱氧铜和无氧铜,由于其焊接性好,常用于焊接结构。
铜合金的焊接,主要的问题是裂纹。与铜一样,由于杂质在晶界析出,铜合金也十分容易形成裂纹。在铝青铜中,由于含Al量比较低,所以形成了T单相的焊缝组织,裂纹敏感性比较高,特别是多层焊时,层易出现裂纹。如果提高Al的含量,就会形成T+U的双相组织,可以抑制裂纹的出现,但是Al的含量过高,会在U相中析出V2硬质相,又会使裂纹敏感性增大,所以, Al的含量以7%~ 11%为宜,且要加入一定量的Ni、 Fe、 Mn来抑制V2硬质相的析出。