中国有色金属产品质量监督检验中心检测机构,九江高纯铝杂质分析纯度鉴定机构
-
¥200.00
共计15道工序,l粉末冶炼:对原籵粉末进行前期的气氛烧结,对原籵粉末中气体含量进行控制,l粉末混合:靶材有着特的配方,需的控制各组分的含量,并严格限制杂质含量。在粉末冶全的过程中,需要将各元素充分混合均匀。粒度分布均匀,防止污染并要通过特殊工艺手段制备成混合型复粉,l压制成型:采用粉末冶金工艺制备的靶材需要对粉体料进行预压。使之成为中等密度生坯。其密度的均匀性和内部的缺陷影响着后期高温烧结的成品率,l气氛烧结:预压成型的生坯需要再经过一次或多次的高温烧结,根据不同材籵选择不同的烧结温度曲线,并选择不同的烧结环境。
而未米的018um}艺甚至013m工艺。所需要的靶材纯度将要求达到5甚至6N以上,铜与铝相比较,铜具有更高的抗电迁移能力及更低的电阻率,能够满足,导体工艺在025um以下的亚微米布线的需要但却带米了其他的问题:铜与有机介质材料的附着强度低.并且容易发生反应,导致在使用过程中芯片的铜互连线被腐蚀而断路,为了解决以上这些问题。需要在铜与介质层之间设置阻挡层,阻挡层材料一般采用高熔点、高电阻率的金属及其化合物。因此要求阻挡层厚度小于50nm。与铜及介质材料的附着性能良好。铜互连和铝互连的阻挡层材料是不同的.需要研制新的靶材材料。
[1]。发展众所周知。靶材材料的技术发展趋势与下游应用产业的薄膜技术发展趋势息息相关,随着应用产业在薄膜产品或元件上的技术改进,靶材技术也应随之变化,如Ic制造商.近段时间致力于低电阻率铜布线的开发。预计未来几年将大幅度取代原来的铝膜。这样铜靶及其所需阻挡层靶材的开发将刻不容缓。另外,近年来平面显示器(FPD)大幅度取代原以阴极射线管(CRT)为主的电脑显示器及电视机市场.亦将大幅增加ITO靶材的技术与市场需求。此外在存储技术方面,高密度、大容量硬盘,高密度的可擦写光盘的需求持续增加.这些均导致应用产业对靶材的需求发生变化。
陶瓷靶材,ITO靶、氧化镁靶、氧化铁靶、氮化硅靶、碳化硅靶、氮化钛靶、氧化铬靶、氧化锌靶、硫化锌靶、二氧化硅靶、一氧化硅靶、氧化铈靶、二氧化锆靶、五氧化二铌靶、二氧化钛靶、二氧化锆靶,、二氧化铪靶,二硼化钛靶,二硼化锆靶。三氧化钨靶,三氧化二铝靶五氧化二钽。五氧化二铌靶、氟化镁靶、氟化钇靶、硒化锌靶、氮化铝靶。氮化硅靶,氮化硼靶。氮化钛靶,碳化硅靶。铌酸锂靶、钛酸镨靶、钛酸钡靶、钛酸镧靶、氧化镍靶、溅射靶材等,合金靶材。铁钴靶FeCo、铝硅靶AlSi、钛硅靶TiSi、铬硅靶CrSi、锌铝靶ZnAl、钛锌靶材TiZn、钛铝靶TiAl、钛锆靶TiZr、钛硅靶TiSi、钛镍靶TiNi、镍铬靶NiCr、镍铝靶NiAl、镍钒靶NiV、镍铁靶NiFe等。
因此铋就成了替代铅的材料,5、蓄电池:在铅酸蓄电池中加入0015%~003%的铋。可以使蓄电池在充放电等性能上均有大的改善和提高,国外蓄电池发展的国家已将其作为发展方向加以实施和推广。6、高纯超细氧化铋:高纯超细氧化铋应用于制造新型陶瓷和半导体。还可用于颜料、涂料的制备和铋基氧化物超导体的研制和开发。7、温差半导体材料:温差材料可以应用在太阳能温差发电元件和温差制冷元件。铋的某些金属化合物如(Bi,Sb)2(Te,Se)3等,特别是以Bi2Te3为基础的固溶体合金,是目前公认的好的半导体制冷材料。
铋系超导材料近年来一直是国际上研究的热点。铋锶钙铜超导线目前已经成为四大超导材料系列之一,3、核燃料冷却剂:核反应堆离不开铋,铋吸收X射线的能力与铅大体相当。但是吸收热中子截面小而熔点较低,因此LMFR反应堆都选用液态高纯铋作为反应堆燃料U235和U233的载体和冷却剂。铋冷却剂还用于核潜艇。性能优于氯化钠,铋还可以作为防护装置用于核裂变装置。4、替代铅:铅的应用也比较广,像铅黄铜、颜料、铅弹等等。都含铅,但是由于铅的毒性,会严重桅人体神经系统。国际上一直在寻求铅的替代品,铋由于和铅在许多性能方面都很接近。而且是对人体无害的“绿色金属”。
搭配上聚光光学组件从而使其应用领域开始扩大,并且正在以较快的速度普及。CIGS薄膜太阳能电池是第三代太阳能电池。具有生产、安装、使用成本低,光电转换率高的优势,因而在众多太阳能电池产品中成为发展快的一族,虽然世界上已投产或在建的CIGS工厂已超过40多家。但金属镓在CIGS的原材料中所占比重仅为5%—10%。随着CIGS生产规模的扩大,该行业对金属镓的需求会有明显增长,在原子能工业中。镓可以作为热传导物质。将反应堆中的热量传导出来,此外。镓还可以吸收中子。从而达到控制中子数目和反应速度的效果,碘化镓应用到高压水银灯镓还可以用来制造阴极蒸汽灯。
镓是一种低熔点高沸点的稀散金属。有“电子工业脊梁”的美誉。镓的化合物是的半导体材料。被广泛应用到光电子工业和微波通信工业。用于制造微波通讯与微波集成、红外光学与红外探测器件、集成电路、发光二极管等。例如我们在电脑上看到的红光和绿光就是由磷化镓二极管发出的。目前,半导体行业金属镓消费量约占总消费量的80%—85%,镓也被应用到太阳能电池的制造中,如砷化镓三五族太阳能电池,该电池具有良好的耐热、耐辐射等特性。其光电转换率非常高。初因为生产、使用成本都非常高,常常被应用在航天和领域,但近几年随着科技的发展。砷化镓太阳能电池的生产和使用成本都在降低。
高纯碲是化学式为Te,熔点为450℃的单质,性质:纯度在99999%以上的碲,有5N。6N和7N三种规格,灰白色金属光泽的结晶,六方晶格。密度624g/cm3,熔点450℃,沸点989℃。室温下不与氧起作用,加热时能与氢作用生成碲化氢,其显著的性质是用它制成的二元、三元、四元合金具有很好的光电性能及温差电转换性能,以95%~99%纯度的工业碲为原料,采用碱性(或酸性)溶液电解或区域熔炼相结合的方法制取。用于太阳能电池、发光二极管、辐射探测器制造。为半导体掺杂剂,碲(tellurium)是一种准金属,元素符号为Te。