车牌识别系统的工作原理是怎么样呢?
近年来随着社会的发展、汽车数量逞几何倍增,对于交通的管理、车辆的停车管理还有收费的管理要求也随着汽车数量的增加而要求更高。
完整的车牌识别系统它包括:图像抓拍、车牌识别、车辆检测、数据传输等几局部组成。车牌识别系统也包括字符算法、定位算法、和光学字符算法等。当车辆检测局部信息时触发图像采集单元进行采集。系统的采集单元会自动的对图像影像进行预处理,完够定位出车辆的位置,然而再把识别出来的字符进行分割再进行对比,然而组成号的输出。
车辆检测:可采用地线圈检测、检测技术、红外检测、视频检测等多种方式感知车辆的经过,而且还触发摄像机对车辆进行抓拍采集。
图像采集:经过摄像抓拍主机对通行车辆实时采集、不连续记载。
预处置:自动曝光、自动白均衡、噪声过滤以及边缘加强、伽马校正、比照度调整等。
定位:在经过图像预处置之后对图像进行行列扫描确定区域位置。
字符的分割:在图像中定位出车辆的所在区域后,经过第二值化和灰度化的处理能够准确定位到字符区域,然后依据字符尺寸特征来进行字符分割。
字符辨认:对分割后的字符缩放、特征提取,与字符数据库模板中的规范字符表达方式停止匹配判别。
结果输出:将辨认的结果以文本格式输出。
系统自动识别进入小区车辆的号码和车牌特征,验证用户的合法身份,自动比对黑名单库,自动报警,并可对整个停车场情况进行监控和管理,包括出入口管理,内部管理,采集,存储数据和系统工作状态,以便管理员进行监控,维护,统计,查询和打印报表等工作。
车辆出入小区,完全处于系统监控之下,使小区的出入,收费,防盗,车位管理完全智能化、自动化并具有方便快捷,安全可靠的优点. 其主要特点如下:识别系统对环境的依赖性降低至低程度,可实现全天候正常工作,且识别率保持较高水平。基于LPR识别系统提高了识别的速度和准确性。具有的处理能力,对车辆行进过程中所有图像都进行识别和处理,不依赖于单张图片,有效提高设备对复杂环境的适应能力 1.1、对不同光照的适应能力 在工程现场环境比较复杂,例如:烟雾、雨雪、日光不同角度的照射、车灯以及大型广告牌等都有可能对识别系统造成干扰,特别是采用外触发方式的识别设备,其识别率严重依赖于所抓拍的图片,当抓拍的瞬间,车辆牌照处在受干扰位置,会造成误识别。
车牌自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些车牌识别系统还具有通过视频图像判断是否有车的功能称之为视频车辆检测。一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分(如图1所示)。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。车牌识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。