上海虹口电子束焊接代加工原理
-
面议
在光学显微镜中,利用电子来代替可见光,在图像质量和信息价值,可靠性和利用率方面有很大的优势。,利用电子束放大的倍率可以达到20,000x,而利用可见光的放大倍率只有1000x。散射电子的特征是:利用被检查物体表面的电子核相互作用的弹性,散射电子角度范围可以达到180度,但是平均散射角度为5度。通过这种方式,一小部分散射的原子的原子序数Z发生了强烈的改变,通过这种方式可以对原材料做鉴定比较。这就是所谓的原子序数特征对比。这就是为什么电子束焊接机中需要安装检测板来收集散射电子的原因。软件和CNC系统可以利用这些准确的信息来控制焊接参数。
信息周期的简单描述为一个奇特的电子作为能源做完整的周期运动,载波从电子束发生器出发通过聚焦线圈到达工件表面,反射到传感器,从传感器转化成数字电路,通过软件传递到CNC机电控制系统,然后循环进入能量发生器并回到阴极能量发生器用于再生能源。后将能量用于焊接的孔。
如果焊接件有一定的加工要求,那么在完成这个周期的同时需要克服焊接过程的热变形、热收缩、加工过程轻微缺陷、机器位移导致的变化。当我们可以复制我们的工序时,安全系数才会确定下来。在整个电子束焊接过程中,真空室与CNC以及束流和焊缝跟踪电脑控制系统相连,了焊接的可复制性和可重复性。
特点
1)电子束焊接的能量密度高,可焊接一般电弧焊难以实现的焊缝;
2)电子束焊接是在真空中进行,焊缝的化学成分稳定且纯净,接头强度高,焊缝质量高;
3)电子束焊接速度快,热影响区小,焊接热变形小;
4)电子束焊接适用于焊接几乎所有的金属材料,尤其适合铝材焊接;
5)电子束焊接可获得深宽比大的焊缝(20∶1~50∶1),焊接厚件时可以不开坡口一次成形;
6)电子束焊接结合计算机技术,实现了工艺参数的控制,使焊接过程完全自动化。
电子束焊接技术是目前发展快,应用为广泛的电子束技术。
焊缝熔区即深又窄,深宽比可达50:1,焊件变形可忽略不计,很多精密零件焊后仍然保持精度,并不需要再次精加工,比常规焊接方法可节省大量工时。对于无法整体加工的零件可以采用两件甚至三件后采用此法来进行焊接起来,这样对于原加工工艺可以减少难度,省时、省料甚至可使零件的结构变的更加合理。
缺点
1)设备相对复杂且昂贵。
2)焊接前,对接头加工和装配有严格要求,接头位置准确、间隙小、均匀。
3)在真空电子束焊接过程中,待焊接工件的尺寸和形状经常受到工作室的限制。
4)电子束容易受到杂散电磁场的干扰,影响焊接质量。
5)电子束焊接产生的X射线需要严格保护,以确保操作人员的健康和安全。
后在终选择生产技术时,成本是主要因素之一。虽然激光束焊接的投资成本随着焊接的深度而线性增加,它们与电子束焊接的功率却无关。在根据所需深度的不同,电子束直接比较可能更为昂贵,但在更高功率水平上却相当的便宜。
与电子束焊接一样,电弧焊接工艺近年来也大有发展。相比之下,电子束焊接的成本几乎与焊接材料无关,因为不需要填料材料。辅助工艺成本基本限于功耗,与其他聚变焊接工艺相比,功耗非常低。此外,无需任何气体或相应的粉末来保护焊池,因为工艺产生的真空可提供佳的边界条件。
宇航技术中所用的各类火箭、卫星、飞船、星球车、空间站、太阳能电站等的结构件、发动机以及各种仪器均需用焊接技术,而电子束焊是满足其需求的强有力的工具。宇航零部件所用电子束焊的焊接设备可分为两类:一类是常规的电子束焊机,用来焊接可以在地面进行装配的零部件;另一类是在太空条件下所用的电子束焊机,需要宇航员到太空进行焊接操作,因此要适应太空的特殊环境。