为了进行牌照识别,需要以下几个基本的步骤:
· 牌照定位,定位图片中的牌照位置;
· 牌照字符分割,把牌照中的字符分割出来;
· 牌照字符识别,把分割好的字符进行识别,终组成牌照号码。
牌照识别过程中,牌照颜色的识别依据算法不同,可能在上述不同步骤实现,通常与牌照识别互相配合、互相验证。
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个佳的区域作为牌照区域,并将其从图象中分割出来。
采用计算机视觉技术识别车牌的流程通常都包括车辆图像采集,车牌定位,字符分割,光学字符识别,输出识别结果5个步骤。车辆图像的采集方式决定了车牌识别的技术路线。目前国际ITS通行的两条主流技术路线是自然光和红外光图像采集识别。自然光和红外光不会对人体产生不良的心理影响,也不会对环境产生新的电子污染,属于绿色环保技术。
红外光路线是指利用车牌反光和红外光的光学特性,用红外摄像机采集车辆灰度图像,由于红外特性,车辆图像上几乎只能看见车牌,然后用黑白图像处理方法识别车牌。950nm的红外照明装置可抓拍到很好的反光车牌照图像。因红外光是不可见光,它不会对驾驶员产生视觉影响。另外,红外照明装置提供的是不变的光,所抓拍的图像都是一样的,不论是在一天中明亮的时候,还是在一天中暗的时候。的例外是在白天,有时会看到一些牌照周围的细节,这是因为晴朗天气时太阳光的外光波的影响。采用红外灯的缺点就是所捕获的车牌照图像不是彩色的,不能获取整车图像,并且严重依赖车牌反光材料。
将的牌照信息输入系统,系统自动地识读经过车辆的牌照并查询内部数据库。对于需要自动放行的车辆系统驱动电子门或栏杆机让其通过,对于其它车辆系统会给出警示,由值勤人员处理。可用于特殊单位(如军事管理区、保密单位、保护单位等)、路桥收费卡口、住宅区等。
在交通管理系统中可以将车辆在某条道路的平均旅行时间作为判断该道路拥堵状况的一个参数。安装车牌识别设备于道路的起止点,识读所有通过车辆并将牌照号码传回交通指挥中心,指挥中心的管理系统根据这些结果就可计算出车辆平均旅行时间。