pxie-8374总线扩展模块发展阶段货期火速
-
面议
PXI在1997年完成开发,并在1998年正式推出,它是为了满足日益增加的对复杂仪器系统的需求而推出的一种开放式工业标准。如今,PXI标准由PXI系统联盟(PXI Systems Alliance,PXISA)所管理。该联盟由60多家公司组成,共同推广PXI标准,确保PXI的互换性,并维护PXI规范。
简单来说,PXI是以PCI(Peripheral Component Interconnect)及CompactPCI为基础再加上一些PXI特有的信号组合而成的一个架构。PXI继承了PCI的电气信号,使得PXI拥有如PCI bus的传输数据的能力,因此能够有高达132Mbyte/s到528Mbyte/s的传输性能,在软件上是完全兼容的。另一方面,PXI采用和CompactPCI一样的机械外型结构,因此也能同样享有高密度、坚固外壳及连接器的特性
PXI规格定义了一个低歪斜(low skew)的10MHz参考时钟。此参考时钟位于背板上,并且分布至每一个外设槽(peripheral slot),其特色是由时钟源(Clock source)开始至每一槽的布线长度都是等长的,因此每一外设槽所接受的clock都是同一相位的,这对多个仪器模块的同步来说是一个很方便的时钟来源 [1] 。
局部总线(Local Bus)
在每一个外设槽上,PXI定义了局部总线以及连接其相邻的左方及右方外设槽,左方或右方局部总线各有13条,这个总线除了可以传送数字信号外,也允许传送模拟信号。比如说3号外设槽上有左方局部总线,可以与2号外设槽上的右方局部总线连接,而3号外设槽上的右方局部总线,则与4号外设槽上的左方总线连接。而外设槽3号上的左方局部总线与右方局部总线在背板上是不互相连接的,除非插在3号外设槽的仪器模块将这两方信号连接起来。
星形触发(Star Trigger)
前面说到外设槽2号的左方局部总线在PXI的定义下,实被作为另一种特殊的信号,叫做星形触发。这13条星形触发线被依序分别连接到另外的13个外设槽(如果背板支持到另外13个外设槽的话),且彼此的走线长度都是等长的。也就是说,若在2号外设槽上同一时间在这13条星形触发在线送出触发信号,那么其它仪器模块都会在同一时间收到触发信号(因为每一条触发信号的延迟时间都相同)。也因为这一项特殊的触发功能只有在外设槽2号上才有,因此定义了外设槽2号叫做星形触发控制器槽(Star Trigger Controller Slot)。
触发总线(Trigger Bus)
触发总线共有8条线,在背板上从系统槽(Slot 1)连接到其余的外设槽,为所有插在PXI背板上的仪器模块提供了一个共享的沟通管道。这个8-bit宽度的总线可以让多个仪器模块之间传送时钟信号、触发信号以及特订的传送协议。
PXI Express
由于对电脑速度需求的增长,PCI总线越来越成为系统的瓶颈,从并行总线建立分支的系统结构也越来越难以适应电脑性能的提高。
此瓶颈通过高速串行接口得以突破,PCIe通过成对的数据线传送信号,通常称作PCIe通道(PCIe lane)。单个通道并不比一个64位 33MHz PCI接口更快,但是可以同时建立多个通道以提高数据传输速率,四通道是早期比较主流的配置形式。串行总线连接的形式是点对点的,所以每个连接仅承载线路两端设备间的数据(以及由这些设备扩展而出的设备的数据)并且不会出现一端悬空的连接以避免高速数据的波形发生畸变。通过这些技术进步使每个通道的速率得以提升。这种串行接口系统先天比并行总线具有更好的扩展性。
PCIe第1版规定每通道的基准速率为2.5Gb/s(解码后2.0Gb/s),随后的升级规范进一步提高了数据传输速率并且增加了通道的数量从而可以提供更高的数据带宽。同时提供了对用户透明的降速机制以应对高速设备与下游低速设备(因规范版本或通道数量不同)相连接的情况。
数据连接速率依赖于机箱、机箱插槽以及模块,通常数据传输速率越高相应的实现成本也越高。除了这些,用户实际上并不需了解PCIe接口上数据管理的过程。
系统为树状结构,一个单一的PCIe连接在此结构下扩展为多个连接,并可以进一步扩展更多下级连接。处于主干的分支(源于根复合体,Root Complex)的连接需要较大的带宽以支持更多下游设备的数据流。
与PCI类似,所有信号流均需出入于根复合体,实际速率同时取决于PCIe接口和控制器处理所有数据和驱动程序的能力。在PXI规范中添加了PCIe而称为PXIe。与PXI和PCI的关系相同,PXIe规范中也包含了测试测量领域所需要的各种扩展特性。
背板
PXIe背板采用PCIe连接而不是PCI连接来提供控制接口。PCIe连接大体上允许任意一PCIe(GEN1,GEN2,GEN3)并且允许每个槽位中包含不同数量的连接通道。这又是一个与PXI的重要不同,即不是所有的插槽都是相同的。如果用户需要使用高数据连接速率的模块就需要将其安装于高数据带宽的槽位。如果将低数据速率的模块安装在高数据速率的插槽上,PCIe将调节数据带宽来适应模块,如果高数据速率的模块安装在低数据速率的插槽上,那么模块将以插槽的速率上限来运行。某些机箱包含一种配置背板通道连接的方法来提供更好的灵活性。具体地说,允许把通道汇聚在在某些接口中,因此需要大数据量的模块就能获得比其它槽位更高的带宽。在PXIe背板的实现上还有很多其它的细节区别,例如在10MHz时钟外增加了100MHz时钟。触发系统基于点对点差分信号而不是多路单端信号。只有一个本地总线用于连接相邻模块,所以制造商已经取消了对本地总线的依赖。
机箱电源
背板将机箱电源供应给模块。PXIe机箱为外围模块槽位和定时槽位模块提供2种电源轨而不是像PXI提供4种,分别是+3.3V和+12V,而系统控制器槽还需要+5V。下面的表格显示了机箱供应给插槽的小功率。
表2.1-PXIe机箱电源
系统定时插槽
这个插槽用于PXIe的定时功能。与PXI不同,不能用于其它目的(不能安装仪器模块),所以如果机箱中包含了它那么就意味着有一个插槽将不能被用于设备扩展。这导致了出现不含定时插槽的机箱,并且因此不能支持星形触发器。
PXIe模块
与PXI相同,PXIe模块原则上可以提供3U和6U两种形式,并且支持双3U模块叠加的形式。3U模块有一个助拔手柄,6U模块有两个助拔手柄。PXIe模块的PCIe与定时控制信号通过XJ3连接器连接到背板上,电源与仪器功能(触发与时钟)通过XJ4连接器连接。在6U模块中还包含一个额外的可选择连接器XJ8,可以为模块供应额外的电源。PXI的应用经验为PXIe模块提供了很好的参考,模块的上下两端被槽位上的导轨所固定并通过前端的手柄将模块锁紧。