松江定制碳化硅肖特基二极管厂家
-
面议
SBD 在导通过程中没有额外载流子的注入和储存,因而反向恢复电流小,关断过程很快,开关损耗小。传统的硅肖特基二极管,由于所有金属与硅的功函数差都不很大,硅的肖特基势垒较低,硅 SBD 的反向漏电流偏大,阻断电压较低,只能用于一二百伏的低电压场合且不适合在 150 ℃以上工作。然而,碳化硅 SBD弥补了硅 SBD 的不足,许多金属,例如镍、金、钯、钛、钴等,都可以与碳化硅形成肖特基势垒高度 1 eV 以上的肖特基接触。据报道,Au/4H-SiC 接触的势垒高度可达到 1.73 eV,Ti/4H-SiC 接触的势垒比较低,但高也可以达到 1.1 eV。6H-SiC与各种金属接触之间的肖特基势垒高度变化比较宽,低只有 0.5 eV,高可达1.7 eV。于是,SBD 成为人们开发碳化硅电力电子器件关注的对象。它是高压快速与低功率损耗、耐高温相结合的理想器件。目前国际上相继研制成功水平较高的多种类的碳化硅器件。
国内的SiC功率器件研究方面因为受到 SiC 单晶材料和外延设备的限制起步比较晚,但是却紧紧跟踪国外碳化硅器件的发展形势。国家十分重视碳化硅材料及其器件的研究, 在国家的大力支持下经已经初步形成了研究 SiC 晶体生长、SiC器件设计和制造的队伍。电子科技大学致力于器件结构设计方面,在新结构、器件结终端和器件击穿机理方面做了很多的工作,并且提出宽禁带半导体器件优值理论和宽禁带半导体功率双极型晶体管特性理论。
金属与半导体接触时,载流子流经肖特基势垒形成的电流主要有四种输运途径。这四种输运方式为:
1、N 型 4H-SiC 半导体导带中的载流子电子越过势垒顶部热发射到金属;
2、N 型 4H-SiC 半导体导带中的载流子电子以量子力学隧穿效应进入金属;
3、空间电荷区中空穴和电子的复合;
4、4H-SiC 半导体与金属由于空穴注入效应导致的的中性区复合。