台中挤压镁合金出售镁合金冲压
-
¥120.00
电磁搅拌后,Mg-4Zn-0.3Zr合金晶粒细化且更加均匀,平均晶粒尺寸从91.3μm 降低到85.7μm。合金中的MgZn相数量减少,在晶粒内部有孪晶形成,且存在较多的小角度晶界。另外,抗拉强度和屈服强度分别为189 MPa和105 MPa,伸长率提高到17.3%。由于电磁搅拌合金中的孪晶和小角度晶界的存在,经热挤压后,电磁搅拌Mg-4Zn-0.3Zr合金动态再结晶的程度高,晶粒更加细小,抗拉强度、屈服强度和伸长率分别达到了241 MPa、178 MPa和25.2%。
Mg-4Zn-0.3Zr合金锭由高纯Mg(99.95%,质量分数,下同)、高纯Zn(99.90%)和Mg-30Zr中间合金制备。合金熔炼在全程通有N2(98%,体积分数)和SF6(2%,体积分数)保护气体的电阻炉中进行。在720 ℃下熔化高纯Mg 后,升温至780 ℃ 加入Mg-30Zr中间合金,待中间合金熔化后降温至720 ℃加入高纯Zn,保温30 min后捞渣,准备浇注。将金属液倒入放在电磁搅拌器中圆柱形陶瓷模具中,在磁力搅拌器的作用下完全凝固,电磁搅拌的电流和频率分别为150A 和6 Hz。
镁(Mg)和镁合金已成为结构部件的竞争性替代品,因为运输中对高强度重量比材料的需求不断增长。尽管如此,制造镁部件的一个重要限制是织构镁合金的大拉伸-压缩屈服不对称性,这导致变形过程中的早期断裂。这种行为基本上可以归因于在拉伸和压缩过程中激活的不同变形机制,这是由于热机械加工产生的强烈纹理以及{10`1 2}延伸孪生的极性。
而在这几十年的变迁中,镁合金一般会被用于新能源四轮车的外壳或底盘。它的优势在于比铝合金更轻,能够保持高抗拉强度和阻尼能力,延伸率和冲击抗力则明显好于压铸铝合金,具有优良的力学性能。同时它的流线造型堪比碳纤维,可以做出如跑车级的外观设计,但价格却远远低于碳纤维等流行的轻质材料。
镁合金作为医用金属材料使用时,在某些情况下,材料需要经历较大的塑性变形过程。比如镁合金心血管支架在进行介入手术过程中,需要经受压握,使支架贴附于球囊,然后利用传输装置运送至血管中发生病变的部位, 再利用球囊的膨胀使支架扩张,从而扩开发生狭窄的血管, 后把携带球囊的导管抽出体外,完成支架介入手术。
在挤压棒材上利用线切割加工出 Φ10×2 mm的片状试样,然后依次使用400#、800#、1200# 和2000# 的Si C砂纸打磨。把打磨好的样品,放置于装有酒精的烧杯中,超声波清洗5 min后,电吹风吹干备用。实验过程中,将试样浸泡于装有Hank’s溶液的离心管内,置于37 ℃的恒温箱内,模拟材料在人体内的降解行为,试验样品表面积(cm2) 与Hank’s液体体积(m L)的比例为2.5:1,每种合金选取9个平行样。在浸泡过程中,每24h记录一次Hank’s溶液的p H之变化,并更换一次溶液以保持溶液的p H值保持在正常的人体范围内。分别于1、2、3周后,每种合金取出其中3个样品,放入25wt.% 的铬酸中超声清洗3min以除去样品表面腐蚀产物,然后依次使用水和酒精进行清洗,电吹风吹干后用电子天平称重,计算出平均腐蚀速率,并使用扫描电子显微镜观察样品的腐蚀形貌。平均腐蚀速率的计算公式为 :
平均腐蚀速率=(K×W)/(A×T×D) (1)