无锡供应车牌识别价格表
-
面议
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个佳的区域作为牌照区域,并将其从图象中分割出来。
字符识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,后选佳匹配作为结果。基于人工神经元网络的算法有两种:一种是先对待识别字符进行特征提取,然后用所获得特征来训练神经网络分配器;另一种方法是直接把待处理图像输入网络,由网络自动实现特征提取直至识别出结果。
当车辆接近出入口的时候,车辆检测器会自动感应到车辆的到来,然后触发车牌识别一体机进行图像抓拍,然后将抓拍的图像发送到数据处理服务器,安装在数据服务器上的车牌识别软件对图像进行处理,定位出牌照位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码保存下来,图像和车牌号码均保存在数据处理服务器上。
采用计算机视觉技术识别车牌的流程通常都包括车辆图像采集,车牌定位,字符分割,光学字符识别,输出识别结果5个步骤。车辆图像的采集方式决定了车牌识别的技术路线。目前国际ITS通行的两条主流技术路线是自然光和红外光图像采集识别。自然光和红外光不会对人体产生不良的心理影响,也不会对环境产生新的电子污染,属于绿色环保技术。
自然光路线是指白天利用自然光线,夜间采用辅助照明光源,用彩色摄像机采集车辆真彩色图像,用彩色图像分析处理方法识别车牌。自然光真彩色识别技术路线,与人眼感光习惯一致,并且,真彩色图像能够反映车辆及其周围环境真实的图像信息,不仅可以用来识别车牌照,而且可以用来识别车牌照颜色、车流量、车型、车颜色等车辆特征。用一个摄像机采集的图像,同时实现所有前端基本视频信息采集、识别和人工辅助图像取证判别,可以前瞻性的为未来的智能交通系统工程预留接口。
识别速度决定了一个车牌识别系统是否能够满足实时实际应用的要求。一个识别率很高的系统,如果需要几秒钟,甚至几分钟才能识别出结果,那么这个系统就会因为满足不了实际应用中的实时要求而毫无实用意义。例如,在高速公路收费中车牌识别应用的作用之一是减少通行时间,速度是这一类应用里减少通行时间、避免车道堵车的有力保障。国际交通技术提出的识别速度是1秒以内,越快越好。
一个车牌识别系统的后台管理体系,决定了这个车牌识别系统是否好用。清楚地认识到重要的一点是识别率达到是不可能的,因为车牌照污损、模糊、遮挡,或者天气也许很糟(下雪﹑冰雹﹑大雾等等)。后台管理体系的功能应该包括:
1、识别结果和车辆图像数据的可靠存储,当多功能的系统操作使得网络出差错时能保护图像数据不会丢失,同时便于事后人工排查;
2、有效的自动比对和查询技术,被识别的车牌照号码要同数据库中成千上万的车牌号码自动比对和提示报警,如果车牌照号码没有被正确读取时就要采用模糊查询技术才能得出相对“佳”的比对结果;
3、一个好的车牌识别系统对于联网运行,还需要提供实时通信、网络安全、远程维护、动态数据交互、数据库自动更新、硬件参数设置、系统故障诊断。
交通监管部门每天都要处理大量的违章车辆图片,一般由人工辨识车牌号码再输入管理系统,这种方式工作量大、容易疲劳误判。采用自动识别可以减少工作强度能够大幅度提高处理速度和效率。这种功能可用于电子警察系统、道路监控系统等。
设备架设
1、影像监控区域距离摄像机架设位置距离大约30M~50M位置。
2、摄像机架设高度大约2.8M,如果架设高度越高离影像监控区域距离拉远,因为相关摄像机的取像俯角不能太大(大约15度)。
3、使用镜头时务必要注意一般路口监控使用的镜头有两种规格6~60&10~100MM。
4、取像的角度要尽量将车牌及汽车的位置放大而不要将旁边的景物带入屏幕内避免曝光效果过大或是造成车牌不清楚。
5、如果夜间使用红外线(IR)功率一定要大,因为汽车的车灯也属于红外线光谱的一种,要避免曝光效应只有将IR的功率加大发挥IR的功效。