好氧颗粒污泥(Aerobic Granular Sludge)是通过微生物自凝聚作用形成的颗粒状活性污泥。与普通活性污泥相比,它具有不易发生污泥膨胀、抗冲击能力强、能承受高有机负荷,集不同性质的微生物(好氧、兼氧和厌氧微生物)于一体等特点,近年的研究成果表明AGS能用于处理高浓度有机废水、高含盐度废水及许多工业废水。1991年Mishima等早发现了AGS,并次报道了利用连续流好氧式污泥床反应器(Aerobic Upflow Sludge Blanket,AUSB)培养出AGS。人们从这一研究成果开始了对AGS颗粒化的研究历程。而国内学者对AGS的研究始于1995年,相对滞后于国外的研究。
纳米膜堆肥发酵作为一种新式发酵设备进入到大众视线,由于采用了高科技膜材,借用其单向透过性,使得水蒸气了可透过膜材而臭气分子无法通过,使得畜禽粪污可以直接露天进行发酵。通过分子膜好氧发酵技术,使得风机交换供氧、有效控制微生物活性、控制堆体内氨气挥发,阻隔畜禽粪污臭味扩散,降低物料含水率,缩短堆肥周期。
纳米膜高温好氧堆肥发酵技术不仅应用在养殖场的粪污处理中,也可在有机肥厂的生产中起到关键作用。随着畜禽粪污资源化利用整县推进、农业面源污染防治工作的持续推进,农业农村部等六部门联合印发的《“十四五”全国农业绿色发展规划》。规划进一步明确了4方面11项定量指标,提出秸秆、粪污、农膜利用率分别达到86%以上、80%和85%;是“三加强、一打造”,即加强农业资源保护利用,加强农业面源污染防治,加强农业生态保护修复,打造绿色低碳农业产业链。未来,纳米膜高温好氧堆肥发酵技术将在面源污染、绿色发展中起到重要作用。
纳米膜也叫e-PTFE分子膜。发酵过程中产生的水蒸气和二氧化碳能够从膜的微孔结构扩散出去,而臭气分子如氨气,则溶于膜内层水气,然后滴落回堆体,被进一步分解,既减少了臭气的排放,又提高了堆肥的氮含量。外界雨雪无法渗入膜内,因此可以实现露天运行,减少投资。
有了纳米膜材,那怎样发酵呢?在充分供氧的条件下,主要利用好氧堆肥技术进行发酵。
建立纳米膜发酵区,一般选择在养殖场贮粪区或垃圾秸秆存放区附近不超过50米的地方。优选地势高、平坦、背风、铲车易作业的区域作为堆肥发酵。
第二步,在纳米膜发酵技术开始之前要安装通风管道,利用稻壳、菇渣等蓬松性物料将通风管完全覆盖,形成保护层,防止粘性物料堵塞风管风口。
第三步,堆肥覆膜,将粪污或者秸秆、垃圾堆成垛体,覆盖纳米膜,也就是分子膜。
第四步,温度、氧气浓度等传感器插入堆体中,连接控制系统。根据设备使用要求,启动堆肥机。开始发酵,通过物联网智能监控系统远程监控。减少了养殖场多余人工成本。
第五步,去除纳米发酵膜,覆膜发酵周期一般在15-28天。堆体无臭味、颜色为灰色、灰褐色或黑色。紧接着可以通过商品加工化,生成有机肥料,应符合NY525-2021的规定。其实,用了纳米膜发酵技术对养殖场来说,不仅处理了粪污达到了环保标准,还能有一笔格外的收入。
纳米膜发酵堆肥作为一种低成本新式发酵设备进入到大众视线,由于采用了高分子膜材单向透过性,使得水蒸气可透过膜材而臭气分子无法通过,使得畜禽粪污可以直接露天进行发酵。
广泛应用于:鸡粪、牛粪、羊粪、猪粪、树枝、秸秆、中药渣、城市污泥、尾菜、厨余垃圾、蘑菇菌菇渣、木薯渣、甘蔗渣、蔗糖厂蔗糖泥、牛床垫料发酵、蚯蚓生物饲料、农业废弃物等有机废弃物的无害化处理及资源化利用。
好氧颗粒污泥因其具有较高的微生物量,具备脱氮除磷能力和良好的沉淀性能,在工业废水和城市污水处理中的应用潜力很大,但在其形成机理方面还存在问题并未弄清。
颗粒污泥中,好氧颗粒污泥(AGS)具有表面光滑、密度大、沉降性能良好、能够维持较高的生物量以及承受较高的有机负荷等优点。M. Pronk等指出,好氧颗粒污泥系统的总体能耗为13.9 kW·h,比荷兰传统活性污泥厂的平均耗能水平低58%~63%,其出水水质可以达到传统活性污泥法工艺的出水水质甚至更好。好氧颗粒污泥系统所需要的体积也比现有的常规活性污泥装置所需要的体积低33%左右,在能耗和土建费用方面均有所减少。
与厌氧颗粒污泥相比,好氧颗粒污泥的形成周期较短,约为30 d。在耗能方面,好氧颗粒污泥可在常温条件下进行培养,同时在污水浓度方面局限性小,对高浓度工业废水和城市生活污水的处理均有良好效果。污泥在好氧条件下进行培养,颗粒的分层结构形成好氧、缺氧和厌氧区域,其结构特征可以实现一定程度的脱氮除磷效果。
此外,也可通过控制其他因素达到良好的脱氮效果。影响颗粒污泥同步硝化反硝化的因素包括污水中的溶解氧、污泥的颗粒大小、电子供体可用性以及微生物活性等,例如,微碱性条件有利于亚硝化的进行。低氧浓度条件下氮的去除效率更高,但无法维持好氧颗粒污泥的结构稳定。不同培养条件下产生的硝化细菌也会导致不同的脱氮效果。