徐州304喷氨格栅厂家供应
-
面议
烟气脱硝装置中,氨的扩散及与烟气的混合均匀程度是影响脱硝效率的关键因素之一,也是各个公司的核心技术所在。目前SCR主要的喷氨混合装置是喷氨格栅
喷氨格栅设计不当或烟气气流分布不均匀时,容易造成NOx和NH3的混合及反应不均匀,不但影响脱硝效率及经济性,而且极易造成局部喷氨过量。脱硝装置投运前,应调整烟气气流的分布情况,调整各氨气喷嘴阀门的开度,使各氨气喷嘴流量与烟气中需还原的NOx含量相匹配,以免造成局部喷氨过量。
紫外线烟气分析仪(如图1)以紫外差分吸收光谱技术为核心的新型产品,广泛应用于环境监测以及热工参数测量等部门。分析仪采用命脉冲氙灯、耐腐蚀吸收池、进口高分辨率光谱仪、工控板、传感器及新材料领域的高新技术,用于测量SO2、NOx等有害气体的浓度,与使用电化学传感器测量方法的仪器相比,具有测量精度高、可靠性强、响应时间快等优点。
喷氨格栅(AIG)优化调整过程 1、确定反应器出口烟气测点位置,A、B反应器出口烟气取样点各7个,总共14个。 2、工况稳定情况下,先用紫外线烟气分析仪测量各测点烟气NOx浓度,记录数据,分析数据; 3、确定NOx浓度值,调节空氨混合气42个进气支管手动球阀,实时测量催化剂底部烟气测点烟气浓度变化,使各个测点NOx浓度达到均衡,记录数据。 4、催化剂底部烟气取样点达到均衡后,烟道出口测点检验NOx分布情况,记录数据。
热态调试前,SCR出口NOx浓度大偏差为61.89%,平均偏差17.96%; 热态调试后,SCR出口NOx浓度大偏差为7.89%,平均偏差3.89 %; 经调试后,改善氨气烟气混合均匀度,提高催化剂利用率,调试前后每千克NOx氨耗量下降36.68%。 通过喷氨格栅(AIG)优化调整,出口NOx分布更均匀,更好的了脱硝效率;同时降低了氨耗量,减少运行成本,也降低了硫酸氢铵(ABS)形成的风险。
尤其是环保排放标准的进一步严苛后,大部分机组面临“超净排放”的需求,对SCR反应器内的速度场、浓度场、喷氨格栅喷射三者之间的耦合提出了更高要求,系统均流与混合是脱硝系统运行优化的关键之一[12-16]。
NO、O2进出口浓度采用德国德图公司Testo350型烟气分析仪测定,NO量程0~500μL•L-1,精度0.1μL•L-1,O2量程0%~25%,精度0.01%;NH3逃逸率采用自制氨化学取样系统测定,配套用3071型智能烟气采样器流量范围1.0~3.0L•min-1,精度±5%,烟气取样枪长度为5m,压力测试用WOBI膜盒压力表,量程0~2000Pa,精度±5Pa,配套4.5m的S型皮托管1根,校正系数为0.84。
通过网格布点测量SCR装置的入口及出口烟道,烟道共布置10个测孔,编号依次为B5→B1、A5→A1,其中NO、O2取样点共选取2×5×5个(取深度方向5点均值),NH3取样点共选取2×5×1个,具体布置如图1所示。NO、O2经Testo350烟气分析仪直接测定,氨逃逸样品采用美国EPA的CTM-027标准以化学溶液法采集,取样时间20min。通过分析样品溶液中的氨浓度(见图2),并根据所采集的干态烟气流量和O2,计算各点干基烟气NH3浓度。
本次喷氨格栅优化调整假设和原则如下: 1)反应器出口截面NOx和NH3相对偏差为优化调整终考核指标; 2)调整过程中应综合考虑锅炉负荷、速度场、浓度场等多种因素,按照NH3/NOx等摩尔比理念进行调节; 3)反应器催化剂床层运行正常,没有催化剂积灰、堵塞、中毒等现象; 4)SCR烟气脱硝装置AB侧喷氨格栅母管、喷氨格栅支管运行正常,没有腐蚀、堵塞等情况发生,同样开度下流量相同。