安徽亳州流量计检测-第三方校准计量机构
-
¥1000.00
近我们对本地区所有的税控燃油加油机进行了周期检定,其中对某石油公司两台新安装的税控加油机进行检定时,发现加油机发油不及时。
一、查找问题
1.拿起油枪电动机启动,打开油枪至大流量,油枪口却只有少量油流出,油泵几乎在空转,而流量显示器却显示“正常流量”数据。大约1分钟,流量显示器显示5升左右,实际流出油量只有1升左右。随后,大流量油才开始流出,经标准器测定,此时的计量数据完全吻合。
2.看视油器,里面没有空气泡,说明泵的出油口没有空气,出油管线正常。
3.给进油管底阀加压,没有漏气现象,说明底阀正常。
4.检查整个进油管线(储油罐到油泵),完好无损。
5.发现油泵进口与所配进油管线口径不一致。
二、加油机安装及工作要求
1.加油机安装技术要求,税控加油机与地下油罐的水平距离一般为20m,长不超过30m,油罐的底面与本机进油口的垂直距离不应大于6m。
2.JJG443-1998《燃油加油机》计量检定规程第13.4.1规定:泵的进口真空度应不大于54kPa,高工作压力应不大于0.3MPa。
3.油气分离器排除油中空气或气体的能力(在流量计工作情况下),应满足下列要求:①对黏度低于或等于1mPa·s的油液,空气或气体相对于油液的体积比不超过20%;②对黏度1mPa·s的油液,空气或气体相对于油液的体积比不超过10%。③加油机安装技术要求油泵配置跟进油口(直径为37.1mm(1.5英寸))同等口径的进油管线。
三、分析问题
经仔细分析查看,该石油公司配用了直径为50.8mm(2英寸)的无缝钢管,地下水平距离为20m,油罐的底面与本机进油口的垂直距离为4.5m,不符合安装技术要求需配直径为37.1mm(1.5英寸)的规定。这就相当于进油管线比实际要求拉长了13.56m,〔计算公式:(1.5/2)2×π×Lx=(2/2)2×π×(20+4.5)→Lx≈43.56m即ΔL=43.56-30=13.56m〕导致泵的高工作压力大于0.3MPa,外压比正常要求变小了,从而导致空气或气体相对于油液的体积比超过10%,导致油泵空转、发油不及时,引起计量误差。
四、解决问题
根据加油机安装技术要求,该石油公司将其直径为50.8mm(2英寸)口径的进油管线改为直径为37.1mm(1.5英寸)的管线后,加油机发油正常。
根据以上问题,建议:1.各地加油站在新安装加油机时,要有技术监督部门的人员指导;2.在配备管线及其他附件时,与本机安装要求和《燃油加油机》计量检定规程相符。
注:检定本加油机时油液黏度1mPa·s
氧气吸入器是医疗行业常用的呼吸仪器,主要用于对危重病人进行输氧治疗,它直接接触病人的呼吸道。因此,在治疗呼吸道传染疾病时,应注意对氧气吸入器的严格消毒。
一、对氧气吸入器的消毒
1.每次使用后需对氧气吸入器外壳及连接部位用消毒液进行擦拭消毒,不能进行高温消毒,以免内部机件受损;
2.湿化瓶和过滤网每次使用后都要进行高温消毒;
3.出气孔连接管应作一次性使用机件处理;
4.消毒应进行两次:次应在氧气吸入器使用后就在隔离治疗病房内及时进行消毒,防止病毒随氧气吸入器带出隔离区。第二次消毒应在氧气吸入器进入治疗区使用前进行,防止病毒的二次感染;
5.检定、维修人员在检修氧气吸入器之前也应对其进行消毒处理,防止氧气吸入器携带病毒。
二、氧气吸入器的检定分为气密性检定、压力表示值检定、浮标灵敏性检定和气通量检定四个部分
这四个部分除了压力表的示值检定需在精密表校验台上进行外,其余三个部分都在氧气瓶上进行。
具体的检定步骤是:将氧气吸入器的气源接头连接到氧气瓶上,关止吸入器的流量控制阀,然后打开气瓶角阀,待气源压力表达到指示位置后,再关止气瓶角阀,进行耐压试验;此时如果气源压力表指针有下降的情况,则说明有漏气部位,要分段检查才能确定。如果不漏气,说明气密性检定合格。下一步进行浮标灵敏性检定,操作时应缓缓打开流量控制阀,待浮标指示锥开始上升后,开启并迅速回位,看指示锥在气源冲击下能否升到高位置,如果不能,说明灵敏性太低,要进行调修。气通量的检定主要是检查湿化瓶连接孔和滤网是否堵塞,具体操作同上述步骤一样:打开流量控制阀,先用手指堵住气孔,看浮标是否下降,如果下降,说明湿化瓶连接部分漏气;如果不下降,则迅速松开出气孔,看浮标指示锥是否能顺利下落,如果下落不畅或不下落,说明滤气网堵塞,需清除堵塞物或更换滤气网。
三、氧气吸入器的故障分析和维修方法
氧气减压器的故障主要有漏气、浮标升降不灵活和通气堵塞三个方面。
部分:漏气。前面在气密性检定中气源指示压力表示值有下降的情况,说明有漏气部位。漏气主要有以下四个方面。
(1)连接部分漏气:是指各连接点之间有密封圈破损或连接太松,需检查各连接点密封垫圈是否完好,然后再紧固连接部位,故障即可排除。
(2)控制阀漏气:一般是指控制阀密封圈破损、变形或密封针磨损。维修时,需打开流量控制阀的紧固螺母,拔出控制阀,检查密封圈和顶针;如果密封圈破损变形,要更换;顶针磨损可以进行打磨,将毛刺及划沟打平后上紧,就可以排除故障,如果打磨后仍漏气,则要更换控制阀。
(3)密封圈漏气:是指减压阀上盖和减压仓之间的紧固部分漏气。检查时需打开上盖,看密封圈和塑料垫圈是否破损变形,如果变形则要更换。
(4)破损部位漏气:是指压力表内弹簧管破裂、浮标破裂、湿化瓶破裂以及螺纹破损造成的漏气。更换新件,否则无法重新使用。
第二部分:浮标升降不灵活的分析。
浮标升降不灵活的情况有三种。一是浮标指示锥靠擦浮标内筒;二是减压阀调节螺钉调节不当;三是由于通气堵塞。对于浮标指示锥靠擦浮标内筒的情况,要对指示锥进行打磨或更换;减压阀调节螺钉直接影响着浮标的灵敏度,如果调得过紧,会使浮标灵敏度太高,指示锥在被吹得摇摆不定;如果调得太松,浮标又感觉不到。因此,根据具体检定情况确定调节螺钉的松紧度。氧气吸入器的减压阀属于恒定调节,和氧气、乙炔减压器用上盖调节螺钉的旋转来调节减压仓内的通气量不同,一次性调节好后,无需再动。对于通气堵塞造成的浮标升降不灵活,前面已经讲过,这里不再重复。另外强调一点,在排除堵塞时,用手堵住出气孔,浮标有下降的情况,则要检查湿化瓶及连接螺钉部位是否漏气,如果漏气,要加固密封垫圈或用手旋紧。
安全阀是由压力簧、调节螺钉和活门密封垫片三个部分组合起来的常压机构。在减压仓内气体压力超过一定极,能自动排气,以保护其内部装置。如果在减压仓内气体压力超过安全值的情况下,安全阀自动放气是正常的;但如果氧气瓶内气体压力不高,在流量控制阀关止的情况下,安全阀放气,说明灵敏度太高,影响吸入器的正常使用;需把调节螺钉向内调紧,但不能旋得过紧,以免使安全阀关死。气压过高时会把密封垫片冲破。因此,调节安全阀要缓缓进行,把握好力度,才能排除故障,达到正常使用的要求。
另外,吸入器内部的活门密封垫片是由软胶制成,如果变形或破损则无法修理,只能更换新的密封垫片。
在维修操作过程中,无论是紧固螺丝(母)和卸下螺丝(母)或连接部分,要注意保护其他部位,以免修好了这里,又碰坏了那里,造成被检修物品的报废。后提醒大家注意一点,无论是装和卸,用力要轻,不能用蛮力。
一、总表与分表对不上
1.问题的表现
一宿舍小区,发现其总表所累计的电量与其所带的几块分表所累计的电量之和对不上,并且相差很大。
2.分析与处理
此表为三相四线表,它所累计的电量应该是它本身所带的几块分表所累计的电量之和,所以它是收费标准的依据。
但在正常的负荷下,突然发现此表所累计的电量下降,与往常所累计的数据相差很大。从表的外观上看未发现异常,表盘的转动和计度器工作均正常。随后检查表尾接线是否有虚接现象,也未发现异常现象,接线方式正确。但在活动表尾的其中一条线时(B相电压线),发现此线有一段很软(该线采用的均是单股塑料硬线),怀疑内部金属部分已断开。经仔细检查确认此相电路已断路。
这样一来,此表所累计的电量就会丢失为正常时累计电量的1/3。当B相电压回路断路,此表所累计的电量仅为A相和B相的功率之和。由于B相断开的是此表的电压回路而不是电流回路,所以均不影响各分表以及各用户所带的负载正常使用。
根据以上的分析表明,此故障的出现是很不正常的。因为总表表尾所接的线均是单股塑料硬线,并且金属部分较粗,一般从内部是不容易断开的。因此,经多方面的调查和了解,充分证明了此故障的确是人为造成。由于表尾盖都用钳封已封好无法拆开,只好用钳子将内部金属折断,但绝缘外皮完好如初,很难被人们发现,从而达到窃电的目的。此问题已交有关部门进行处理。
二、现场电能表的测量数据的正确选择
近年来人们越来越关注现场电流、电压、相位、功率以及电能表的高准确度测量。为了达到这一目的,往往需要通过反复拆、接线将高准确度测量仪器的电流互感器串入电路,这既不安全又费时间。同时随着测试的次数不断增加,将会导致接线盒的接线螺丝滑扣,造成接触不良甚至使电流回路开路,引起事故的发生。但现有的钳形电流互感器由于要开口,这样将会使导磁系数大大降低,同时它和位置相关性也很大,地限制了测量准确度的提高,使测出的数据产生了可疑性。为了解决这一问题并充分利用现有的测量仪器,其方法是在测量前弄清钳形电流互感器本身所产生的附加误差,然后将现场所测出的数据减去它本身的附加误差即为实际所测的结果。
一般现场校验仪在周期校验时分两步进行。一是将校验仪的电压和电流的输入端与校验装置的电压和电流输出端通过导线分别连接好,然后测出一组数据。二是再用钳形电流互感器的接线方式,在相同的负荷点的条件下,测出第二组数据,后用第二组数据减去组数据即为电流夹钳的附加误差。
这样一来,此问题基本得到解决,同时使现场测试工作效率大大提高。以前在测试现场表计时,出现误差偏大甚至超差,计量测试人员就盲目下结论,认为此表不合格或性能不好,其实不然,这些测试数据很可能与测试方法和处理方法不妥有关系,这一点切莫忘记。
三、电能表的转速不稳
一般电能表的转速不稳均是由于机械故障导致的。如:
1.当电能表的上、下轴承因缺油而使摩擦力矩增大,有时还伴有吱吱的摩擦振动响声,使电能表的转速变慢。
处理方法:将表壳打开,在上、下轴承中加一点表油,问题即可得到解决。如果上下轴承已损坏或轴尖磨损严重,可换新的器件。
2.由于电能表长期使用或由于制动磁铁质量不好,导致失磁现象,使制动力矩减小,表盘转速变快。
处理方法:将制动磁铁充磁或更换磁铁。
3.当磁铁间有杂物或铁渣时,会使表盘转速时快时慢。
处理方法:清理杂物并对不平的表盘进行校正。
上述现象都是造成电能表转速不稳的主要原因,但这也不能一概而论。电能表的转速不仅和以上所述原因有关,同时还和它所带的负荷性质有关。以三相三线电能表为例,当它的负荷为纯阻性时(即功率因数为1.0,Φ角为0°时),它的两组元件都会在转盘上产生一个转动力矩。它的功率计算公式为:PZ=UABIAcos(Φ+30°)+UCBICcos(Φ-30°)[式中:PZ为总功率;Φ为相电压与相电流之间的夹角;(Φ+30°)和(Φ-30°)均为线电压与相电流之间的夹角]。
当负载为感性或容性时(功率因数为0.5,Φ角为60°时),在两组元件中的其中一组功率为零,这样它的总功率就为原来总功率的一半,当然转速就比负荷为纯阻性时的转速慢。由于线路的负荷有时在不断地变化,因此,电能表的转速也就随之变化,但这是正常现象。
四、两表交替使用,造成电量丢失
1.问题的表现
据某单位宿舍电工反映,某用户根据他的实际负荷及平常用电量来判断,该户电表所累计的用电量突然下降,经检查也未发现异常现象。
2.分析与处理
根据以上所述,有关人员决定到现场进行观察和分析。经过一段时间后,有关计量人员来到现场对此表进行观察,表箱没有被锁,观察中突然发现此表的表底数以及编号和原始记录都对不上,表的外壳虽然有铅封但表尾盖却没铅封。根据这一系列情况判断,可能是用户已将表更换。为了证明此用户是否有窃电行为,决定到抄表日再来一趟。果然到了抄表日此表又换了新面目,无论是表底数还是编号都与原始记录对上了。无疑此户是利用了两表交替使用进行窃电活动。即上半月用新表,下半月用原始表(月底为抄表日)。这样一来,原始表所累计的电量仅为正常累计电量的1/2。
此问题已交给有关计量部门进行处理。
通过以上分析,总结出了此问题的发生根源,主要是由于管理不善造成的。如:无正规的表箱、铅封不到位以及工作不认真等。因此,计量工作人员一定要从思想上高度重视。只有将管理工作和计量工作紧密配合起来,才能有效地避免此类问题的发生。
计量工作是企业的基础工作之一。然而,在各个炼化企业中,计量仪表的使用情况参差不齐。几年来,我公司计量仪表检测率达到了98%。将这几年公司计量仪表的使用体会写出,供同行参考。
一、针对不同情况,对症下药
1.能源计量仪表存在的问题及整改措施
在炼化企业中能源计量仪表主要包括:蒸汽仪表、水表、电能表、燃料油表及风表、干气表。在上述计量仪表中,电能表、水表、燃料油表相对出现问题的概率较少。除去除氧水的计量仪表较特殊外,日常所用的新鲜水表、循环水表很少出现问题,所以能源计量仪表存在的问题主要集中在蒸汽仪表、风表及干气和除氧水表的计量问题上。
(1)除氧水的计量问题
除氧水难以计量的主要原因:一是除氧水温度高,一般为105℃;二是压力高,为1.3MPa,因而不能使用一般水表。因为一般的水表耐温范围于常温,耐压一般不超过1.0MPa。
许多单位都采用孔板计量除氧水,但其缺陷是,在离装置区较近且供电十分方便的情况下方能实现,而且不太直观。我公司采用的是罗茨流量计LC系列计量除氧水,使用该仪表安装位置不受限制、读数直观、计量准确,耐温、耐压都符合要求,使用多年一直很好。我公司采用的另一种是天津津东水表厂生产的热水表LXSCR系列,耐温90℃,耐压1.0MPa,使用情况良好。
(2)蒸汽计量问题
蒸汽计量的方式较多,比较常用和直观的还是旋翼式蒸汽计量表,型号为LFX。这种仪表适合于小型炼油厂作为蒸汽计量装置。旋翼式蒸汽计量表使用中主要存在的问题是定期保养和维修。目前我们采用LXSCR系列计量仪表,使用情况良好。
(3)气体的计量问题
炼油企业所涉及的气体计量仪表,一般就是压缩风的计量、干气的计量两种情况。压缩风的计量我公司一般采用孔板计量,而干气的计量由于装置的不同要求,孔板计量无法满足。由于干气中H2S的含量较高,孔板计量过程中引压管经常因腐蚀积锈,影响测量准确度,尤其使用时间一长,引压管堵塞造成无法计量。2000年检修后,我们选用LJS-BI型旋涡旋进式流量计作为干气计量表,使用情况良好。
2.物料类的计量仪表
炼油企业中,用于物料计量的仪表繁多,包括汽油、柴油、液化气、蜡油、渣油、原油的计量仪表及地秤。在以上计量仪表中,柴油、蜡油、渣油、原油的计量仪表在我公司运行正常,但汽油计量仪表、液化气计量仪表却一直是我公司较为头疼的问题之一。
(1)汽油计量问题
我公司加工的原油含硫量较高,使得用孔板计量汽油的方法因引压管堵及差压变送器的正负压室被腐蚀穿而无法正常使用。在这种情况下,只得采用检尺来计量汽油的产量。为了计量准确,我们只得采用罗茨流量计、椭圆齿轮流量计、浮子流量计等仪表来计量。经过不断摸索和筛选,浮子流量计因准确度差、读数不够直观而被淘汰,普通的罗茨流量计、椭圆齿轮流量计也因汽油腐蚀,每半年就得更换转子而被淘汰。后采用了不锈钢计量室加普通计数器组合到一起的罗茨流量计,较好地解决了汽油计量问题。
(2)液化气计量问题
液化气由于密度小(20℃时,密度0.57g/cm3)、气液相混合、腐蚀性强而难以计量。我公司采用过多种计量仪表,效果均不理想,所以在段时间内基本上采用了检尺的方法。但检尺误差大而不能满足考核的要求,因此,我们在充分调研的基础上采用E+H公司生产的PROMASS63质量流量计,自1999年投用以来,因其计量准确、维修率低、读数直观,赢得了大家的好评。
二、加强维修与保养,提高计量检测率
1.建立一支的计量仪表维修队伍
根据公司计量仪表的数量,我们成立了计量维修班,配备一名技术员负责计量仪表的选型、改进及处理维修过程中的技术问题。
2.注意跟踪计量仪表新技术,不断提高测量准确度
随着仪表自动化的迅速发展,新型计量仪表、计量技术不断出现,计算机用于产品计量已越来越被大多数单位所采用,质量流量计也因价格下调不断地被用户采纳。经过多年的发展,各种流量计的型式、结构、功能也有了很大改观,流量计使用起来更、更方便,这就需要我们在以后的实践中不断摸索经验,改进计量手段,为企业计量手段的不断提高做出贡献。
一、检定中的调整
1.水平仪零位偏移的调整
若水平仪调零范围偏向一侧或调不出零位,可将水平仪置于已调好水平的平板上,量程开关置于Ⅱ档位置。顺时针旋转调零旋钮,直至数值不变记下该读数;然后逆时针旋转调零旋钮,直至数值不变记下该读数;将两次记录的数值的值相加,即为该水平仪的调零范围。
旋转调零旋钮,使显示数变化调零范围的一半,用平口螺刀调整仪器左侧下方零位调整孔中的微调电位器,直至水平仪的显示值为零。此时,调零旋钮基本处于中间位置。
2.示值超差的调整
示值误差的调整在小角度检查仪上进行。若Ⅱ档超差,并且调整电位器变化不明显,应转至Ⅰ档进行调整。
在小角度检查仪起点零位及水平仪零位调好后,将“正向”或“负向”大测量范围所需尺寸的量块替换定位指示计下面的起点量块,然后使指示计继续指零。此时若水平仪超差,可调整背面增益调整孔内的微调电位器。面向孔时,逆时针旋转电位器,水平仪的数值值增大,反之减小。
二、常见故障的排除
1.手把组件容易发生的故障
(1)水平仪可用电池供电,若电池连接不当,B档显示“1”或“-1”,应检查电池安装是否正确;若B档显示<800数,电池电量不足,应更换电池。若“正”“负”电源中点断路,显示值较正常低(100~200)数,手把的电池仓内有一黑线(压在电池极性标牌下),可能装卸电池时,不慎将该线弄断,使得水平仪的供电方式改变,B档显示值偏低,水平仪稳定性明显变差,数字跳动。在电池电压符合要求的情况下,B档显示值为1200数左右。
(2)手把上的插座有3个功能:a.模拟量输出;b.差动测量;c.电源输入(注:外接电源可通过该插座给水平仪供电。外接电源供电后,B档电池检测功能失效,“0”档关机时仍显示随机数字)。
以上几种功能出现故障,均应检查手把背面各连接线的焊接点是否可靠。
2.壳体组件的故障
(1)数字缺划:液晶相应段码电路虚焊或接触不良。
(2)B档显示值不对:在排除电源供电电路的故障后,应检查D4二极管是否失效(注:元件序号以产品说明书所附电路原理图编号对应)。
(3)模拟量与显示值不符,检查调整ICL7160的35、36脚基准电压,应调整在(0.987~1.000)V之间。
(4)调零范围小,只有正常值的一半时,应检查R11有无故障。
(5)波段开关-5V没接通,将导致无换档。
3.底座组件引起的故障
(1)R4和C3、R5和C4构成正反馈网络,决定振荡器的频率。R3和R6构成负反馈网络,决定振荡器的幅度振荡波形。检查T3、IC2有无损坏,有关的阻容元件是否完好,振荡幅度的调整R11实现。
(2)R1=R2时,则输出电压Vo=-Vs,无倒相应检查IC1或C1。
(3)在阻抗变换电路中R15的接地应可靠,否则水平仪易出现不稳的因素。
(4)示值超差,先调整增益调整孔内的微调电位器,若调不过来,则需调整IC3接线柱上的固定电阻R31。示值偏小,减少R31阻值;示值偏大,增加R31阻值。
(5)采用运算放大器IC4与RC元件组成低通滤波电路,水平仪出现数字跳动等现象,检查C9是否可靠。
(6)零位偏移可调整零位调整孔中的R13半可调电位器,若调不过来,则需调整IC1、IC2上的两对接线柱上的固定电阻R12、R14,并且与C6相位调整结合起来进行。
(7)如果波段开关上的-5V加在Ⅱ档时,已输入到电路,仍无换档,则应检查T6场效应管及决定换档比例的相关电阻。
(8)传感器引起的故障有:零位偏移、回零不好和稳定性差。
传感器是水平仪的核心部件,其故障的判断在电路故障已排除后进行。传感器出现故障,一般情况下更换经过老化处理、筛选出的合格品,并且电路全部需重新调整。
一、系统故障的基本分析方法
1.在分析故障前,要比较透彻地了解有关控制系统的工艺生产过程、工艺情况及特殊条件,了解控制系统的设计方案、设计意图、系统结构特点、控制器参数要求、各种仪表的性能特点等。
2.在分析和检查故障之前,还要向现场操作人员了解生产的负荷、原料等是否有变化,再对仪表的记录曲线进行综合分析,以初步确定故障原因和故障所在。
3.如果仪表记录曲线呈直线而不变化,或记录曲线原来为波动,现在突然变成一条直线,这种情况下,故障很可能是在仪表部分。因为记录仪表的灵敏度较高,参数的变化应该能反映出来。此时可人为改变工艺条件(参数),如果记录曲线仍不响应,则大致能断定是仪表系统出了问题。
4.我们观察记录曲线时,发现记录曲线发生突变或记录指针突跳至大或小位置上,此时的故障也常在仪表部分。
5.问题出现以前,仪表记录曲线一直表现正常,出现波动后记录曲线变得毫无规律,或使系统难以控制,甚至连手操作也不能控制,此时故障可能是在工艺生产部分。
6.当我们发现控制室显示仪表不正常时,可以去现场观察同一直观仪表的指示值,如果它们差别很大,则很可能是仪表系统出现故障。
总之,分析故障原因时,除了要考虑到测量显示仪表系统外,还特别要注意被控对象特性的变化和控制阀特性的变化,这些都可能是出现系统故障的原因。所以要从仪表系统和工艺系统两个方面综合考虑,仔细分析、检查。
二、工业过程控制系统的故障分析
1.温度控制系统
需特别注意两点:一是系统普遍采用电动仪表,二是系统的滞后往往较大。
(1)如果记录仪表突然变到大或小时,常为仪表故障。因为温度系统滞后较大,不会发生突变。此时的故障原因常常是热电偶或热电阻引线断路、放大器失灵等。
(2)记录仪表指针出现快速振荡现象时,常为仪表PID参数整定不当等原因。
(3)记录仪指针出现大幅度波动,可能是由于工艺上工况有大的变化引起的;如当时工况上无大的变化,则常为仪表本身原因。此时可将控制器切换到手动操作,若波动大大减小,则为控制器本身故障,否则是记录仪放大器故障。
(4)控制器输出漂移或输出电流突然变为大或小,而同时温度记录值却无大的变化,常为控制器的放大器故障,或是输出回路有故障。
(5)当我们观察到控制器的输出电流回不到零点上,或在较大反偏差时输出反而增大时,考虑故障是否出在控制器本身,然后再考虑其他原因。
2.压力控制系统
下面以蒸汽压力自动控制系统为例来分析和判断故障。
(1)如果蒸汽管路压力记录突然降至零而安全阀起跳时,此时是仪表出现故障。这种故障一般发生在引压管到记录仪表之间。控制阀开度发生突变,引起蒸汽压力骤增而记录仪无反应,这时可先转入手动遥控控制阀,再处理系统仪表故障。
(2)蒸汽管路的压力记录值没有规定值,而安全阀起跳,这时可互相对照其他相关仪表(特别是该蒸汽系统温度指示值)。如果各点温度正常,证明安全阀没有调整好。如果各点温度升高,则是压力记录值低于真实压力,应检修仪表。
(3)观察压力波动时,发现压力示值有快速振荡现象,这时要从控制器参数整定值及非仪表方面查找原因。
(4)当发现压力波动较大,但较缓慢时,建议从生产工艺上查找原因。
(5)生产中负荷、加料、温度等起变化以及操作不正确时,均会引起设备内的压力变化,这时应从工艺操作上查找原因。
(6)平时要做到对每个仪表的压力波动情况心中有数,能分清是正常还是非正常情况,或能参照其他工艺参数情况做出正确判断。
3.流量控制系统
(1)流量记录值达到小时,则应检查现场一次仪表,如果正常,则是二次表出现故障。当现场一次仪表也指示小,再观察控制阀开度,若开度为零,则常为控制器到控制阀仪表之间的故障造成的。当一次仪表指示小,但控制阀开度正常,故障原因可能为:系统压力不够、泵堵、管路结晶以及操作失误等。若故障是仪表方面时,原因可能有:孔板检测时正引压管堵、变送器正压室漏、转子流量计转子卡在下部、椭圆齿轮流量计齿轮卡死或过滤网堵等。
(2)当流量记录值达到大时,则一次仪表也常常会指示大。此时可手动遥控控制阀,如果流量能降下来,则一般为工艺工况原因造成。若流量值降不下来,则可能为仪表方面的原因。
(3)如果流量波动较频繁,我们可将控制切换到手动,如波动仍频繁,则一般为工艺方面的原因。如果波动减少,则常是仪表方面原因或控制器参数整定不合适。
4.液位控制系统
(1)液位记录值变到大或小时,我们可检查一次仪表,如一次仪表正常,则为二次仪表故障。如二次仪表正常,则可手操控制阀检查液面指示是否有变化,若有变化,一般为工艺方面原因;若无变化,则很有可能是仪表方面的故障。
(2)带负迁移的仪表指示值若变到大,则可能是负压侧出现泄漏现象。如果由气相直接引到负压室的仪表指示值变到小时,可能是负压侧等液罐中液体上升过高,应及时排出。
(3)记录指针出现很快地波动现象,可能是控制器参数整定不合适、一次仪表振荡或仪表信号管路等故障。如波动较缓慢,常为工艺工况方面原因造成的故障。
以上只是简单介绍了常见的单控制系统的故障分析,而实际上化工过程中各参数间是密切联系、相互影响和依赖的,当几个系统同时投运后,则可能出现各系统间的相互干扰。这一问题可以从工艺合理性上考虑解决,也可以从设计复杂控制系统或引进控制方案等方面加以解决。