硫自养脱氮滤料,水污水处理,自养滤料安装
-
¥3500.00
硫自养反硝化影响因素
1、硫氮比(S/N)
硫自养反硝化与传统的异养反硝化具有相同的脱氮路径,与C/N比类似,初始的S/N对反应也起着十分重要的作用。S/N过低容易导致反应不完全,S/N过高不仅会导致成本的增加,还有使硝酸盐异化还原成铵的可能。Wang等研究指出硫自养反硝化过程的佳S/N为5:3;Cai等也研究得出了与Wang等相似的结果,佳S/N为5:2。也有其他研究人员也有提出S/N为1.3时较好的观点,但这都是以S2-为电子供体得出的结论,对其他种类电子供体的佳S/N研究较少。
温度对于硫自养反硝化过程是一个重要的环境因素,对细菌的生长和反硝化的速率有明显的影响。车轩等研究提出脱氮硫杆菌适的生长温度为29.5 ℃,适的反硝化温度为32.8 ℃;张晓晨等试验发现温度在30 ℃~35 ℃条件下有高的硝酸盐去除率;Donovan等指出脱氮硫杆菌在28 ℃~32 ℃范围内活性较好;牛建敏等筛选出的菌种在20.0 ℃~35.0 ℃范围内有较好的效果。由此可知,硫自养反硝化的适温度在30 ℃左右。
硫自养反硝化的优缺点
1、填料板结堵塞问题,生物膜容易堵塞填料,使脱氮效率下降,需要频繁反洗;
2、出水硫酸盐含量增加;
3、填料成本较高,一次性投入大!
硫自养反硝化的工艺控制难点
1.负荷较高的条件下出水中不可避免地存在大量SO42-,在硫酸盐还原菌(SRB)存在时会释放H2S气体,不仅造成排水管道的腐蚀,其恶臭、毒性还将带来二次污染问题。
2.利用硫化物为电子供体的自养反硝化工艺,系统中的微生物可能受到硫化物的毒性抑制作用,导致处理效率不高,处理能力下降。因此,启动期的污泥驯化非常重要,需要不断提高微生物对于硫化物毒性的耐受能力,才能保障系统的稳定运行。
硫自养反硝化的工艺控制难点在哪
3.低温会抑制反硝化菌系统的脱氮性能,进而导致脱氮速率降低。为了提升低温条件下硫自养反硝化系统的脱氮性能,可以从电子供体(硫源)和异样反硝化过程两方面着手。硫代硫酸盐作为一种可溶性硫,比疏水性单质硫更易被硫氧化菌利用,常温下硫代硫酸盐作为电子供体时硝态氮的还原速率为单质硫的 10倍。硫自养反硝化混合菌体系中含有一定量的异养反硝化菌,而此类细菌具有生长快、易在短期内形成大量微生物的优势,可能会对低温表现出更好的抗性。因此,低温条件下,利用硫代硫酸盐或有机物作为电子供体可能会提升反硝化系统的脱氮能力。
硫自养反硝化过程中产生了H+,导致pH降低,但脱氮硫杆菌自养反硝化过程的佳pH为6.8~7。因此环境中需要有一定的碱度,与产生的H+发生反应以便维持中性环境。此外,自养反硝化过程需要无机碳合成细菌细胞,故加入石灰石,既为细菌生长提供了无机碳,又维持了pH中性环境。石灰石主要成分是碳酸钙,其分子式为CaCO3,分子量为100.09,熔点为1339℃,相对密度为2.93g/cm3。白色粉末,无臭无味,放置在空气中不发生反应。几乎不溶于水,可和酸性液体会发生中和反应。碳酸钙经过高温灼烧可生成氧化钙,分子式为CaO。氧化钙吸收水分后生成氢氧化钙,分子式为Ca(OH)2,氢氧化钙微溶于水,会吸收空气中的二氧化碳生成碳酸钙。
碳酸钙在有水分存在时呈弱碱性,能和酸性物质发生中和反应。碳酸钙在有二氧化碳和水存在的情况下水解生成碳酸氢钙。碳酸氢钙易溶于水,溶液呈弱碱性,并具有一定的缓冲作用。石灰石投入酸性溶液中会发生一定的中和反应,使得一部分钙离子以游离的形式进入溶液。当溶液中存在硫酸根时会生成硫酸钙沉淀,去除硫酸根污染。
硫自养关键为能够进行自养反硝化的复核滤料。我司技术团队经技术攻关,采用硫与石灰石粉混合造粒的方式制备反硝化填料,填料表面附着的硫与石灰石分布均匀,因此提高了系统对pH值的缓冲能力,且可保持TN去除率在80%左右,出水pH为中性。
硫自养生物滤池
硫自养生物滤池主要由滤池外壳(碳钢防腐或钢筋混凝土结构),进水布水系统,滤板滤头,复合滤料层、出水系统,反洗系统等组成。
硫自养生物滤池的优点
· 硫–石灰石自养反硝化能部分解决碱度问题;
· 石灰石能够有效中和系统中的H+,且产生的CO2和CO32-可以为自养菌的生长提供无机碳源;
· 产生的Ca2+可以与水中的PO43-反应生成磷酸钙沉淀,使系统兼有脱氮除磷功能,且系统中总磷主要以化学沉淀法被去除。