聊城高唐县工地人脸识别测温+刷卡
-
面议
人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、系统、视频图像处理等多种技术,同时需结合中间值处理的理论与实现,是生物特征识别的新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。
人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:
非强制性:用户不需要配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;
非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;
除此之外,还符合视觉特性:“以貌识人”的特性,以及操作简单、结果直观、隐蔽性好等特点。
人脸图像特征提取
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
人脸图像匹配与识别
人脸图像匹配与识别:提取的人脸图像的特征数据与数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出。人脸识别就是将待识别的人脸特征与已得到的人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。
人脸识别技术广泛地应用于日常生活中,如相机拍摄,图片对比等,尤其近两年来,相亲节目如火如荼,其中浙江电视台的爱情连连看中的佳像环节就利用了人脸对比技术来测试男女主人公面相的相似程度。
随着移动互联网的崛起,一些人脸识别技术的将该项技术应用到领域中,如应用开心脸等,根据人脸的轮廓,肤色,纹理,质地,色彩,光照等特征来计算照片中主人公与的相似度。
人脸识别考勤系统软件
人脸识别考勤系统,就是依托人脸识别技术的考勤管理系统,人脸考勤系统采集员工的姓名,ID号,员工面部图片,员工在考勤后记 录会传递到考勤管理系统中,再由系统来运算缺勤,加班等信息。
人脸识别考勤软件特点
其特点为:是一种考勤管理理念的载体,考勤软件通过TCP/IP连接”辨脸通”获取人员与考勤数据进行考勤统计,具有用户管理、班次设置、排班、考勤报表统计、输出/打印报表等完整功能。该软件将复杂的考勤管理工作量智能化和简化,使考勤管理的各个环节,人尽其能,人尽其责,信息交流及时、畅通,查询统计便捷,考勤管理工作变得简单而轻松。
人脸识别考勤应用
人脸识别考勤系统,能有效提高企业的考勤管理方式,规范员工考勤操作,防止出现代打卡、弄虚作行为,也方便有效的提高考勤效率。同时支持TCP/IP联网方式,考勤数据自动上传管理部门,管理考勤数据。广泛适用于企事业单位、中小学教育机构、酒店、会所、等。
综上所述,具备环保节能特征是安防产品将受到制造厂商与消费者的青睐,因为其不仅满足了人们对“环保与高度安全”的需求,而且识别率高、简单易用,为各种环境的安防提供了理想的解决方案。除上述的新颖指纹识别总体设计方案与非接触,防人脸识别考勤机是的典例外,又如智能视分析模块及应用等多种安防技术与产品的开发,相信在不久的将来,将得到更广泛的应用。