临沂肥料用Y氨基丁酸
-
面议
细菌侵染过程中的植物GAD表达量和γ-羟基丁酸转录丰度会上升,致使GABA升高。高GABA合成水平的烟草对根癌土壤杆菌C58感染敏感性有所下降。GABA可诱导农杆菌ATTKLM操纵子表达,使得N-(3-氧代辛酰基)高丝氨酸内酯的浓度减少,群体感应信号(或激素)下调,影响其对植物的毒性。GABA在植物与细菌的信号交流中也发挥作用,GABA可以抑制细菌内Hrpl基因表达(Hrpl基因编码蛋白使得植物致敏或引起其组织疾病),同时抑制植物体内hrp基因表达,使得植物免于过敏反应(hrp:控制植物病原体致病能力,并引起过敏反应)。
多胺(polyamine,PAs)包括腐胺(putrescine,Put)、精胺(spermine,Spm)和亚精胺(spermidine,Spd),其中以腐胺作为多胺生物代谢的中心物质。多胺降解途径是指二胺或多胺(PAs)分别经二胺氧化酶(diamine oxidase,DAO)和多胺氧化酶(polyamine oxidase,PAO)催化产生4-氨基丁醛,再经4-氨基丁醛脱氢酶(4-amino aldehyde dehydrogenase,AMADH)脱氢生成GABA的过程,多胺降解途径终与GABA支路交汇后参与TCA循环代谢。其中二胺氧化酶和多胺氧化酶是分别催化生物体内Put和Spd、Spm降解的关键酶。蚕豆发芽期间,厌氧胁迫可诱导多胺合成的关键性酶活性的提高,促进多胺的积累,同时多胺氧化酶活性也随之提高,通过多胺降解途径促进了GABA的合成与积累,提高了蚕豆的抗逆境能力。研究表明,大豆根中游离多胺含量在盐胁迫下增加,DAO活力提高,GABA富集量增加11~17倍。尽管多胺降解途径被认为是合成GABA的另一条重要途径,但其在单子叶植物中合成GABA的能力远低于GABA支路。
GABA长久以来被认为与植物多种应激和防御系统有关。GABA会随着植物受到刺激而升高,被认为是植物中响应于各种外界变化、内部刺激和离子环境等因素如pH、温度、外部天敌刺激的一种有效机制。GABA还可以调节植物内环境如抗氧化、催熟、保鲜植物等作用。近年来GABA在植物中也被发现作为信号分子在植物中传递扩大信息。GABA曾在大豆、拟南芥、茉莉、草莓等植物中相继发现。低浓度的GABA有助于植物生长发育,高浓度下又会起相反的作用。