连云港废气处理活性炭如何选购-普通型号
-
¥1000.00
山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。 临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。
活性炭吸附原理
废气处理活性炭在制备过程中,由于活化剂(水蒸气、氯氧化钾,磷酸等)侵蚀清化作用、产生大量的孔隙结构,这些孔隙结构的形成,增加了活性炭的比表面积,使其具备的吸附能力,活性炭的吸附能力不但与其礼隙结构有关,还与其表面化学性质一一表面的化学官能团、表面杂原子和化合物有关,不同的表面官能团、杂原子和化合物对不同的吸附所有明显的吸附差别。在活化过程中,活性炭的表面会形成大量的羟基,羧基、羰基等含氧表面配合物,不同种类的含氧基团是活性炭的活性位,它们能使活性炭表面呈现微弱的酸性,或性、氧化性、还原性、亲木性和疏水性等,这些构成了活性炭性能的多样性,同时影响活性炭与活性组分的结合能力,一般而言,活性炭表面含氧官能团中的酸性化合物越丰富,吸附极性化合物的效率越高,而碱性化合物较多的活性炭易吸附极性较弱的或非极性的物质。
为了增强活性炭的吸附能力,常常对其进行改性处理,通过化学氧化,还原以及负载等改性方法可使活性炭表面的化学性质发生改变,增加酸碱基团的相对含量可选择吸附极性不同的物质,或通过增加特定的表面杂原子或化合物来增强对特定吸附质的吸附。
废气处理活性炭的特殊功能及室内应用
1.特殊功能
①利用活性炭物理吸附与化学吸附的协同作用,经过孔经调节工艺,使其具备与室内有害气体分子大小相匹配的孔隙结构,完全吸附有害气体而不是遮盖或淡化气味,从根本上清除室内污染,
②活性炭能够对室内所有有害气体分子进行吸附,同时具有调节催化等性能,能够有效地吸附形成空气中各种有害气体与气味的苯系物、卤代烷烃,醛、酮、酸等有机物成分及空气中的浮游细菌,杀灭霉菌、大肠杆菌、金黄色葡萄球菌、脓菌等致病菌,抑制流行性病原的传播,具有去毒、吸味、除臭、去湿、防霉、杀菌、净化等综合功能,如表6-11所示。
③室内环保指出:装饰装修所造成的室内污染,其污染源挥发甲醛、苯、甲苯、氨气、氧等是一个缓慢释放过程,甚至将会持续3~15年,开窗通风法、化学喷除法、花卉去除法等只是迅速遮盖或驱散已挥发的有害气体,而不能根本去除缓慢释放的有害气体,而活性炭的吸附过程是一个长效稳定过程,基本与有害气体的释放过程相吻合,从而达到完全去除的效果。
①活性炭是选用绿色环保的果壳为原料,在加工时没有添加任何化学成分,对人体副作用,同时又可避免喷剂等对家具造成的褪色、潮湿等。
山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。 临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。
地址:山东临朐县冶源镇西圈村
废气处理活性炭薄膜用于室内空气净化滤器随着空气净化器的普及,希望能够提高它的性能,特别是希望能够有立即能达到净化效果的即效性空气净化器。为了满足这种要求,作为必需的空气净化滤器的特性,要能进行大风量的处理,空气净化滤器的压力损失要小,且吸附气体的速度要快。减小粒径可以提高活性炭的吸附速度,但是当粒径小于500μm时,操作性能非常差,同时压力损失也变大,普通活性炭填充方式不能使用。作为操作性能的空气净化迪器材料而开发出来的微粒状活性炭薄膜,是将吸附速度和压力损失在高水平上统一起来的可以作为空气净化滤器使用的产物。作为微粒状活性炭的粒径,可以根据使用目的,在粒径范围100~500μm的活性炭中任意选择:单位面积薄膜中的活性炭质量,可以根据使用目的,在50-300g/m范围内任意设定,薄膜中的活性炭含量可高达80%的程度。如此成型而成的薄膜厚度为0.3~2mm,能进行褶皱成型加工,这是能够同时满足压力损失小、吸附速度快两个矛盾的性质并能加工成空气净化滤器的一个关键。微粒状活性炭薄膜经过折皱加工,能够很容易地折叠形成空气净化滤器的开口面积20~30倍程度的面积,能够把通过微粒状活性炭薄膜的线速度减少至空气净化滤器的面上风速的1/30~1/20。使用微粒状活性炭薄膜时,与除尘薄膜滤材积层而成的除尘脱臭复合薄膜,通过褶皱能够很容易地制造除尘机能与脱臭机能一体化的空气净化滤器。不仅降低成本,而且能有效地利用空气净化滤器的容积,同时还能提高除尘机能与脱臭机能。
(3)新型室内空气净化器新型室内空气净化器基本原理见图6-14。由纤维过滤层和活性炭-纳米TiO:复合光催化净化层组成。其中,纤维过滤层与一般空气过滤器的功能相似,主要用于去除室内空气中的固体颗粒污染物及附着于其上的微生物,活性炭-纳米TiO:复合光催化净化层用于去除挥发性有机物,所谓活性炭-纳米TiO:复合光催化净化体,也即利用吸附剂活性炭与光催化剂纳米TiO:复合的方法,在支承体表面上黏结活性炭形成吸附层,然后再将纳米TiO:负载在活性炭粉末颗粒上形成外层的光催化层。
山东临朐县海源活性炭厂,位于潍坊市临朐县冶源镇西圈村,建厂多年来,经不断发展,现已成为一家综合性滤料厂家,产品有:各种型号用途活性炭,广泛应用于污水处理、工业废气吸附、饮料水处理、净水过滤、电厂水预处理、废水回收前处理、生物法污水处理。 临朐县海源活性炭厂,是一家从事活性炭生产20年的生产厂家,产品20多个型号,覆盖不同领域的活性炭使用环境,产品营销全国,质量稳定如一,初心不改,一切为环保事业做出应有的贡献,始终将青山绿水作为自己产品质量的要求。
活性炭储氢
木材炭化获得多孔炭或活性炭,很久以来被人们用于制药和净化,而随着次世界大战的爆发,出现了对防毒面具的需求,活性炭的气体分离能力和储气能力开始得到高度重视。初人们采用普通活性炭吸附储氮。活性炭是经活化的多孔、有大内表面积和孔容积,以碳素为主要构成元素的具有高表面活性的炭。活性炭具有像石墨晶粒却无规则排列的微品,在活化过程中微晶间产生了形状不同、大小不一的孔隙,这些孔隙特别是小于20nm的微孔,提供了的表面积,微孔的孔隙容积一般为0.25~0.9mL/g.孔隙数量约为每克1020个,全部微孔表面积约为500~1500m2/g。微孔是决定活性炭吸附性能高低的重要因素。在低温吸附系统中活性炭作为吸附剂,其优点是尺寸、质量适中,但由于活性炭的孔径分布宽,微孔容积小,为维持氢的物理吸附要求的条件较苛刻,即使在低温下储氢量也很低,不到1%,室温下更低。因此,活性炭作为储氢材料的应用受到限制。
后来人们采用比表面积更大,孔径更小、更均匀的超级活性炭(比表面积约在2000m2/g以上)作为储存燃料气体的主要载体,用比表面积高达3000m²/g的超级活性炭储氢,在77K、3MPa条件下可吸氢5%()。氢在超级活性炭上的吸附量,随压力升高而显著增加,压力越高氢存储容量越大。
氢气在活性炭上的吸附是一种物理过程。温度恒定时,加压吸附,减压脱附。从实测吸附等温线看,脱附线与吸附线重合,没有滞留效应。即在给定的压力区间内,增压时的吸氢量与减压时的放氢量相等。吸氢与放氢仅仅取决于压力的变化。
活性炭是由含炭为主的物质作原料,经高温炭化和活化制得的疏水性吸附剂。活性炭含有大量微孔,具有无比的表面积,能有效地去除色度、臭味,可去除二级出水中大多数有机污染物和某些无机物,包含某些有毒的重金属。
活性炭的原理
1、过滤原理
活性炭过滤器是将水中悬浮状态的污染物进行截留的过程,被截留的悬浮物充塞于活性炭间的空隙。滤层孔隙尺度以及孔隙率的大小,随活性炭料粒度的加大而增大。即活性炭粒度越粗,可容纳悬浮物的空间越大。其表现为过滤能力增强,纳污能力增加,截污量增大。同时,活性炭滤层孔隙越大,水中悬浮物越能被更深地输送至下一层活性炭滤层,在有足够保护厚度的条件下,悬浮物可以更多地被截留,使中下层滤层更好地发挥截留作用,机组截污量增加。
从严格的理论上讲,活性炭所具有的对悬浮物的截留能力来自活性炭所提供的表面积。流速低时,机组的过滤能力主要地来自活性炭的筛除作用,而流速快时,过滤能力来自活性炭颗粒表面的吸附作用,在过滤过程中活性炭所提供的颗粒表面积越大,对水中悬浮物的附着力越强。
2、吸附原理
根据吸附过程中活性炭分子和污染物分子之间作用力的不同,可将吸附分为两大类:物理吸附和化学吸附(又称活性吸附)。在吸附过程中,当活性炭分子和污染物分子之间的作用力是范德华力(或静电引力)时称为物理吸附;当活性炭分子和污染物分 子之间的作用力是化学键时称为化学吸附。物理吸附的吸附强度主要与活性炭的物理性质有关,与活性炭的化学性质基本无关。由于范德华力较弱,对污染物分子的结构影响不大,这种力与分子间内聚力一样,故可把物理吸附类比为凝聚现象。物理吸附时污染物的化学性质仍然保持不变。
由于化学键强,对污染物分子的结构影响较大,故可把化学吸附看做化学反应,是污染物与活性炭间化学作用的结果。化学吸附一般包含电子对共享或电子转移,而不是简单的微扰或弱极化作用,是不可逆的化学反应过程。物理吸附和化学吸附的根本区别在于产生吸附键的作用力。
吸附过程是污染物分子被吸附到固体表面的过程,分子的自由能会降低,因此,吸附过程是放热过程,所放出的热称为该污染物在此固体表面上的吸附热。由于物理吸附和化学吸附的作用力不同,它们在吸附热、吸附速率、吸附活化能、吸附温度、选择性、吸附层数和吸附光谱等方面表现出一定的差异。
活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史。20世纪70年代开始用于工业废水处理。生产实践表明,活性炭对水中微量有机污染物具有的吸附性,它对纺织印染、染料化工、食品加工和有机化工等工业废水都有良好的吸附效果。一般情况下,对废水中以BOD、COD等综合指标表示的有机物,如合成染料、表面性剂、酚类、苯类、有机氯、农药和石油化工产品等,都有特的去除能力。所以,活性炭吸附法已逐步成为工业废水二级或三级处理的主要方法之一。
吸附是一种物质附着在另一种物质表面上的缓慢作用过程。吸附是一种界面现象,其与表面张力、表面能的变化有关。引起吸附的推动能力有两种,一种是溶剂水对疏水物质的排斥力,另一种是固体对溶质的亲和吸引力。废水处理中的吸附,多数是这两种力综合作用的结果。活性炭的比表面积和孔隙结构直接影响其吸附能力,在选择活性炭时,应根据废水的水质通过试验确定。对印染废水宜选择过渡孔发达的炭种。此外,灰分也有影响,灰分愈小,吸附性能愈好;吸附质分子的大小与炭孔隙直径愈接近,愈容易被吸附;吸附质浓度对活性炭吸附量也有影响。在一定浓度范围内,吸附量是随吸附质浓度的增大而增加的。另外,水温和pH值也有影响
为了净化空气进行了大量研究,其中以活性炭为过滤吸附材料的研究应用也较广,活性炭容易清除单质碘蒸气,而甲基碘因具有较高蒸气压力,难以吸附。因此利用浸清活性炭在同位素交换或化学结合过程予以净化是当前较为满意的解决办法。
同位素交换利用的是没有放射性和不挥发的无机碘化物浸溃的活性炭,在放射性甲基碘于炭料层中短暂的停留时间内,在吸附剂上发生碘问位素的交换,因此由于无放射性碘的大量过剩,所以可达到良好的交换效率。
过滤装置是在相对湿度为99%~条件下,能净化程度大于99%的、炭层长度不小于20cm矩形截面的、特殊结构的过滤器。为了预先防止放射性炭尘埃的放出,悬浮微粒过滤器可设置在用活性炭制成的过滤器之后,在原子能发电站中空气不断的经过活性炭过滤器而循环。因为在这种情况下,浸溃活性炭的吸附能力由于吸收了在过滤器操作期间内严格控制的有机蒸气而有所降低。
化学结合是在利用叔胺浸溃的活性炭时,甲基碘可与其化合而生成季铵盐,它与其他胺相比具有较小的挥发性和较强的碱性而显得特别有效。然而胺易挥发,并降低活性炭的燃点温度,因此,像这样的浸溃组成在许多国家均不使用。
淄博活性炭经筛选以2%TEDA(三亚乙基二胺)和2%K1浸溃的油棕炭制成活性炭,与复旦大学和上海原子核研究所合作研究应用,结果说明该浸溃活性炭可用作核电站中除碘过滤器的吸附材料。
(2)放射性稀有气体水反应堆废气中含有极少量的长衰期的同位素氪,主要是含短衰期的同位素氪和氙。在吸附剂上长时间以大浓度保留这些稀有气体是不可能的。然而,如果在装有活性炭的一个吸附器中的持留时间与同位素
恶臭是空气中的异味物质刺激嗅觉器官而引起不愉快和损害生活环境的污染物,污染源来自含硫等烃类化合物,常出现在饲料厂。皮革厂、纸浆厂。化工厂、垃圾污水处理厂、水产加工厂、农场等。通常把正常勉强能感觉到的臭味浓度称为嗅觉的阈值,臭味灵敏度因人而异,与臭味阈值的资料常不相同。一股臭味强度以嗅觉阈值分为六级。
我国在《恶臭污染物排放标准》(GB14554-1993)中对八种恶臭污染物规定了一项大排放限值:氨、二甲胺、硫化氢、甲硫醇、甲硫醚,二甲二硫,二硫化碳、苯乙烯。
恶臭的治理方法因臭气性质而异,有用水、酸或碱的吸收法。有直接燃烧脱臭法或催化燃烧脱臭法,有活性炭脱臭法。对低浓度的恶臭气体的处理,通常采用活性炭脱臭法,效果良好。活性炭品种型号的选择,应经实验室试验其吸附能力、吸附速度、机械强度、再生难易、价格高低而定。针对恶臭的性质,可以对活性炭进行定向处理,提高其使用效果;吸附温度控制在40℃以下为宜,以利提高吸附效果。
将活性炭和活性氢化铝、二氧化硅、沸石和(或)重金属,再加黏结剂组成的制品,可有效地除去空气中臭味、细菌和真菌孢子,适用于冰箱、冷冻器等。将0.1%~20%铁、铬、镍、钴、锰、锌、铜、镁的氧化物和(或)钙载在100份的活性炭上,经水蒸气的气氛下加热处理,再以有机黏结剂成型。这种蜂窝状活性炭具有高的催化氧化活性和低的压力损耗,适用于作冰箱、厕所和空气净化器中的防臭剂,可迅速去除低浓度的甲硫醇或胺等臭味物质。蜂窝状活性炭也可用于处理空气中臭气的过滤器,通过颗粒活性炭和酚醛树脂黏结剂制成的吸附剂在多层床中的过滤作用,密闭室内或厕所里的臭味可有效地脱除。将活性炭层夹入两片透气片中成为三明治式结构的除臭片。透气片之一以阳离子去臭剂浸渍,透气片之二以阴离子去臭剂浸渍,除臭效率更大。以旋转混合装置将有臭气的空气与活性炭、吸附剂接触,再以微波辐射装置处理用过的废炭,会有臭氧的催化分解装置处理被吸附杂质。11.治理放射性气体和蒸气
活性炭用于“三苯”废气吸附净化,有三种工艺:
一是活性炭吸附脱附回收。活性炭吸附一定量污染物后,用水蒸气进行脱附,并进行冷凝分离,回收溶剂。该工艺适合处理单一组分废气,但投资较大,不适于小厂使用。
二是活性炭吸附催化燃烧。活性炭吸附污染物后,用热风解吸,解吸下来的污染物采取催化燃烧。该工艺适合处理大风量有机废气,无二次污染,自动控制能力高。但由于活性炭层厚,容易因为热量堆积引发自燃,安全性差。
三是活性炭分散吸附、集中再生。适用于废气排放点多、面广、规模小、资金少的厂家。吸附器结构设计是关键,该设备外形是环形,占地面积小,主要是考虑到颗粒活性炭层厚度、气流分布、阻力处理能力、活性炭的装卸更换。再生全过程是在活化炉内预热、脱附、煅烧活化和炉内废气燃烧及冷却出料。这种活性炭净化废气装置已有许多小型厂投入使用。
活性炭吸附法工艺过程包括:活性炭吸附废气中的“三苯”溶剂;吸附饱和后的活性炭脱附和溶剂回收;活性炭活化再生。用活性炭回收苯类溶剂,一般在常温下吸附,以蒸汽在110℃以下解吸,冷凝分离回收。例如,天津石油化纤厂回收对二甲苯,西安石棉制品厂回收汽油和苯。合成纤维厂的废气中有对苯二甲酸二甲酯装置的氧化尾气主要含对二甲苯,采用活性炭立式吸附器,将氧化尾气通过后经冷却分离,回收对二甲苯。活性炭饱和后用热空气再生。脱附的有机物送入焚烧炉焚燃,效果好。成本高。
废气处理活性炭以核桃壳、桃壳、杏壳为原料,经系列生产工艺精加工而成。外观为黑色,呈颗粒状,具有空隙发达、吸附性能好、强度高、易再生、经济等优点。 主要用于冶金、钢铁、石油、生活、液相吸附、化工、电力、饮用水、纯净水、制酒、饮料、工业污水的净化、脱色、脱氯、除臭;也可用于炼油行业的脱醇等。特别适用于电厂、石化、炼油厂、印染纺织业、食品饮料、药用活性炭、电子高纯水、生活饮用水、工业中水回用等行业。更能有效吸附水中的游离氯、、、油、胶质、农药残留物和其他有机污染物,余氯、半脱氯值,以及的回收等。
活性炭外观:黑色颗粒状。椰壳活性炭性能:产品选用椰子壳为原料,具有比表面积大,强度高,吸附性能高等优点,产品全,有不规则破碎和小颗粒等几个大类。椰壳活性炭用途:目前椰子壳活性炭是用于饮用水的净化、除氯、除藻、吸氧、催化载体方面效果好的一种活性炭,可用于净水器、虑芯填充物等净水设备;可用于碳浆法,堆浸法和黄金提取以及冶金工业中贵金属的分离和提取,也可用于水质净化。活性炭,果壳活性炭。
椰壳活性炭使用注意事项:1、活性炭在运输过程中,防止与坚硬物质混状,不可踩、踏,以防炭粒破碎,影响质量。2、储存 应储存于多孔型吸附剂,所以在运输储存和使用过程中,都要防止水浸,因水浸后,大量水充满活性空隙,使其失去作用。3、防止焦油类物质 在使用过程中,应禁止焦油类物质带入活性炭床,以免堵塞活性炭空隙,使其失去吸附作用。好有除焦设备净化气体。4、防火 活性炭在储存或运输时,防止与火源直接接触,以防着火、活性炭再生时避免进氧并再生,再生后用蒸汽冷却降至80℃以下,否则温度高,遇氧,活性炭自燃。
废气处理活性炭干嘛用的 工业蜂窝活性炭是一种有效的净化材料,它可以去除空气中的有害气体、异味、等有害物质,因此在工业生产、疾病等领域得到广泛应用。但是,工业蜂窝活性炭的规格和用途限制了它在家庭中的应用。 工业蜂窝活性炭在制造上比较复杂,需要用到高温高压等条件。因此,它的成本较高,不能普及到普通家庭中。 工业蜂窝活性炭的尺寸较大,不便于家庭使用,难以移动。再加上它的生产材料较为固定,不适合家庭中不同的环境和需求。 因此,我们建议在家庭生活中使用更适合的净化材料,如空气净化器、活性炭包等。这些产品在尺寸、价格等方面更加灵活,更便于家庭使用,可以满足家庭需求的净化和去异味的工作。
活性碳主要用途﹕ 1.用于液相吸附类活性碳 •自来水,工业用水,电镀废水,纯净水,饮料,食品,医药用水净化及电子超纯水制备。 •蔗糖、木糖、味精、药品、柠檬酸、化工产品、食品添加剂的脱色、精制和去杂质纯化过滤 •油脂、油品、、的脱色、除杂、除味、酒类及饮料的净化、除臭、除杂 •精细化工、医药化工、生物制药过程产品提纯、精制、脱色、过滤。 •环保工程废水、生活废水净化、脱色、脱臭、降COD 2.用于气相吸附类特种活性碳 •油气、CS2等有机溶剂吸附与回收。 •装修除味、室内空气净化(,等的去除),工业用气的净化(如CO2、N2等) •石化行业生产、气净化、脱、除臭、废气的治理 •生化、油漆工业、地下场所、皮革工厂、动物饲养场所的空气净化、脱臭。 •烟道气的臭气吸附、化物吸附,蒸汽的去除,降低戴奥辛的生成。 3.用于高要求领域特种活性碳 •催化剂及催化剂载体(钯炭催化剂、钌炭催化剂、铑炭催化剂、铂炭催化剂),贵重金属催化剂及合成金刚石、黄金提取。 •血液净化、汽车炭罐、燃料电池、双电层电容器、电池负材料、贮能材料、等高要求领域。