齐河县真石漆岗亭厂家
-
面议
高分辨率与辨认速度的矛盾
从模仿相机到高清相机,也会引发图像的高分辨率与辨认速度相矛盾的问题。高清的优势显而易见,但是任何事情都是两面的,在车牌识别中车牌辨认时主要表现为:高清图片由于图片掩盖面广,可能会同时在图片中呈现多个车牌的辨认。这就对车牌辨认的速度请求很高,车牌辨认系统关于高清视频流码流过大,还会因对辨认系统资源占用需求过大而剖析起来会呈现处置速渡过慢的问题,这可能招致呈现漏车现象,而难以完成对车辆抓拍率和车牌辨认率的提升。
车牌辨认系统的顺应性急需增强
目前我国的车牌辨认产品都请求所辨认的车牌大小固定,而对过大和过小的车牌普通都不能辨认。这样就形成对视频触发的状况下局部车牌无法被辨认的问题。此外,在有些现场环境中,由于受外界条件的影响,无法将相机架设在位置,会形成图片中车牌不同水平的偏移。
对图像预处置
车牌识别中车牌定位之前普通要对图像做预处置,然后再停止车牌的定位、分割、辨认等局部。由于得到的车牌图像可能含有较多噪声,或图像比照度不强、车牌被局部遮挡、车牌处呈现污点、变脏、含糊褪色、有其它字符区域干扰、以及呈现因运动产生的图像含糊失真等状况,所以定位算法完成起来有较多艰难。关于字符分割,则可能存在光照不均、污迹严重、车牌倾斜、比照度小、牌照褪色、牌照字符粘连等不利要素,这样就需求研发与之顺应的算法。如算法能顺应各种复杂环境和有噪声、车牌遮挡、车牌倾斜等情况的话,那就能够大大进步车牌辨认的概率。
车牌识别系统(VehicleLicensePlateRecognion,VLPR)是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。
图像采集
根据车辆检测方式的不同,图像采集一般分为两种,一种是静态模式下的图像采集,通过车辆触发地感线圈、红外或雷达等装置,给相机一个触发信号,相机在接收到触发信号后会抓拍一张图像,该方法的优点是触发率高,性能稳定,缺点是需要切割地面铺设线圈,施工量大;另一种是视频模式下的图像采集,外部不需要任何触发信号,相机会实时地记录视频流图像,该方法的优点是施工方便,不需要切割地面铺设线圈,也不需要安装车检器等零部件,但其缺点也十分显著,由于算法的极限,该方案的触发率与识别率较之外设触发都要低一些。
车牌定位
从整个图像中准确地检测出车牌区域,是车牌识别过程的一个重要步骤,如果定位失败或定位不完整,会直接导致终识别失败。由于复杂的图像背景,且要考虑不清晰车牌的定位,所以很容易把栅栏,广告牌等噪声当成车牌,所以如何排除这些伪车牌也是车牌定位的一个难点。为了提高定位的准确率和提高识别速度,一般的车牌识别系统都会设计一个外部接口,让用户自己根据现场环境设置不同的识别区域。
车牌校正
由于受拍摄角度、镜头等因素的影响,图像中的车牌存在水平倾斜、垂直倾斜或梯形畸变等变形,这给后续的识别处理带来了困难。如果在定位到车牌后*行车牌校正处理,这样做有利于去除车牌边框等噪声,更有利于字符识别。目前常用校正方法有:Hough变换法,通过检测车牌上下、左右边框直线来计算倾斜角度;旋转投影法,通过按不同角度将图像在水平轴上进行垂直投影,其投影值为0的点数之和时的角度即为垂直倾斜角度,水平角度的计算方法与其相似;主成分分析法,根据车牌背景与字符交界处的颜色具有固定搭配这一特征、求出颜色对特征点的主成分方向即为车牌的水平倾斜角度;方差小法,根据字符在垂直方向投影点的坐标方差小导出垂直倾斜角的闭合表达式,从而确定垂直倾斜角度;透视变换,利用检测到的车牌的四个顶点经过相关矩阵变换后实现车牌的畸变校正。
随着行业的发展,市场各式各样的需求,市场对车牌识别系统(车牌识别系统)的需求越来越广泛,主要分为:软件识别和硬件识别。通过车牌号码的自动识别、自动登陆、自动对比,系统可以实现自动开闸、自动计费、自动验证用户车辆身份、自动区分内外部车辆、自动计算车位数、自动报警等诸多智能化功能。
高速公路以及收费站
车牌识别系统在高速公路上的应用,应该可以说是很多司机经常见到的一种,车辆在停靠之,就会自动显示出车辆所走的公里数以及需要收费相应的金额,在很大程度上提高了收费的效率还有沟通方面的成本。