房山求购钴酸锂电池正极材料行情报价
-
¥168.00
钴酸锂的化学式为LiCoO2,理论容量达到274mAh/g,实际发挥容量为140mAh/g。这位客官要问了,为什了实际发挥容量比理论容量发挥少这么多呢?
这就要从钴酸锂的结构讲起了目前商用的钴酸锂为高温下合成的层状结构钴酸锂(HT-LiCoO2),而另外一种在较低的温度下合成的尖晶石型的钴酸锂(LT-LiCoO2)由于振实密度低,循环性能差而被抛弃。
层状钴酸锂中,Li,Co交替分布于氧原子的两侧,空间点阵为R3m结构。锂离子在钴酸锂的内部起到支撑的作用,在充电时,锂离子从钴酸锂内部脱出,随着锂离子脱出数量的增加,锂离子电池的电压也逐渐提高。当锂离子的脱出数量达到一半时,也就是钴酸锂的化学式变为Li0.5CoO2时,此时电池电压约为4.2V左右。此时钴酸锂材料的容量约为140mAh/g
提高钴酸锂电池的充电电压可以提高电池的体积能量密度,因此开发下一代更高电压的钴酸锂材料已经成为科研界及企业共同关注的热点。
目前,钴酸锂电池充电截止电压已经从1991年早商业化时的4.20V逐渐提升至4.45V(vs Li/Li+),体积能量密度已经超过700Wh/L。
然而随着充电电压的提高,钴酸锂材料会逐渐出现不可逆结构相变、表界面稳定性下降、安全性能下降等问题,限制了其实际应用。
正极材料是锂电池的核心关键材料,各种应用场景对锂电池及其材料在能量密度、输出功率、循环寿命、高温存储和安全性等性能方面提出了越来越高的要求。
(1)是高能量密度的应用。比如数码消费类的手机、笔记本、以及电动汽车等对能量密度的要求很高,需要开发单晶型高电压钴酸锂以及多元材料、高镍含量的多元材料、富锂锰基材料、固态电池关键材料等新型正极材料,同时尽可能提高材料的填充性,从而提高锂电池能量密度。
(2) 其次是高功率的要求,比如无人机、电动工具、混合动力汽车、快充型的电动汽车等等对充放电倍率要求很高,需要缩短锂离子的迁移距离,提升锂离子扩散系数,实现电池的快速充放电。
历时5年完成开发,突破了多项关键技术,已于2015年实现量产,成为行业内兼具高能量和高倍率的钴酸锂正极材料。我们率先开发出了单晶型小颗粒材料的高温固相结晶新工艺;采用多元素协同掺杂技术,大幅提升了材料的大电流充放电能力,同时提高了材料高电压应用的结构稳定性和高温循环寿命;开发了新型Core-Shell/Doping表面修饰技术,稳定材料界面,提升材料循环寿命与高温存储性能。
中国是锂电池及其关键材料的生产和消费大国,国内企业在产业化技术开发、产品迭代开发应用方面基本上处于国际水平,但在基础性研究、原创性技术开发、性专利技术布局等方面还有不小差距,需要加大研发投入,持续提升创新能力,形成具有国际竞争力的自主知识产权的产品技术
在着力部署原始创新的同时,不断加大对产业化技术发展及产品化开发的支持。
建议完善对锂电池及其核心材料技术和产业化的相关支持政策,支持属地企业加大技术开发投入、构建技术优势,扩大业务规模,提高综合竞争力和市场话语权。
强化以支撑属地新能源材料产业发展为导向的技术创新,培育以属地骨干企业为主体的研发平台与创新能力,使之成为区域协同创新的核心,充分利用和协同属地科技资源,打造的新能源材料创新高地和企业集群,做大新能源产业的产值规模
钴酸锂是目前应用为广泛锂离子电池正极材料之一,尤其是在便携设备和移动电子设备中的锂离子电池中,这得益于其的体积能量密度和稳定的循环性能。
然而,其实际所用的能量密度仅占其理论能量密度的一半,仍然有很大的发展提升空间。提高能量密度常用的办法是提升充电电压,利用更多的锂源,但这样做会迅速加快钴酸锂正极材料的失效,造成电池性能快速衰退,以及安全性问题。这其中的衰退机制繁多而且复杂,裂纹就是其中之一。
本报告中,将介绍我们利用电子显微镜相关的分析技术,研究裂纹在钴酸锂正极材料中晶界处的形核和扩展机制,并探讨循环条件不同时,裂纹产生机制的相同和不同之处。