江苏销售SCR脱硝喷氨格栅强大的技术团队
-
面议
通常设计喷氨格栅(AIG)是将烟道截面划分为若干个控制区域,每个控制区域有若干的喷射孔。喷氨格栅包括喷氨管道、支撑、配件和氨气分布装置等。设计时,喷氨格栅的位置及喷嘴形式是根据锅炉尾部烟道的布置情况,通过模拟流场试验来选择的。同时,应通过烟道设计的优化及加设烟气导流板,使进入SCR反应器的烟气气流保持均匀。喷氨格栅设计不当或烟气气流分布不均匀时,容易造成NOx和NH。
NH3-NOx混合浓度偏差往往会随运行时间的推移越来越大,部分区域氨逃逸浓度远远超过3ppm,而局部NOx浓度则达不到环保指标要求。电厂往往被迫通过加大喷氨量来维持出口NOx排放浓度,既增加了很多氨耗量,同时也使形成硫酸氢氨(ABS)的几率大大增加。
为什么要进行喷氨格栅(AIG)优化调整?
氨格栅(AIG)优化调整是通过调节各个喷氨支管的喷氨量,使NH3和NOx混合更均匀。一般脱硝机组喷氨格栅(AIG)优化调整的频次为每年一次,可根据机组运行情况适当增加优化频次。
基于全区域NH3/NOx等摩尔比理念,并综合考虑该反应器入口的浓度场和速度场状况进行喷氨格栅优化。调整后,在660、500、330MW3种典型工况下,NOx浓度大偏差分别降至5.8、10.3、11.8mg•m-3,NH3逃逸率由调前的4.64μL•L-1分别降至调后的2.67、3.03、2.14μL•L-1。系统总效率基本不变,但效率峰谷差异下降明显。
选择性催化还原技术是当前世界上脱氮主流工艺。火电厂大气污染物排放控制标准GB13223-2011的颁布使国内在短期内大面积投运SCR脱硝系统,相关学者[1-7]在流场、系统模拟方面也做了较多研究;但在运行优化方面前期缺乏积累,逐渐暴露出诸如效率不稳、空气预热器堵塞严重,甚至炉膛负压波动剧烈,不得不停炉吹扫等问题[8-11]。
NO、O2进出口浓度采用德国德图公司Testo350型烟气分析仪测定,NO量程0~500μL•L-1,精度0.1μL•L-1,O2量程0%~25%,精度0.01%;NH3逃逸率采用自制氨化学取样系统测定,配套用3071型智能烟气采样器流量范围1.0~3.0L•min-1,精度±5%,烟气取样枪长度为5m,压力测试用WOBI膜盒压力表,量程0~2000Pa,精度±5Pa,配套4.5m的S型皮托管1根,校正系数为0.84。
两侧反应器总体风量较均匀,受负荷波动性较小。此外,反应器入口烟道烟气流速分布均匀,其中B侧烟气流速偏差分别为0.4、0.8、0.5m•s-1,相对偏差分别为2.8、7.1、6.0%,A侧内外侧偏差为1.3、0.6、0.6m•s-1,相对偏差分别为9.4%、5.7%、7.2%。这表明速度场的波动对喷氨格栅优化调整基本没有影响。