景德镇挤压镁合金报价及图片镁挤压坯料
-
¥118.00
挤压工艺主要的部分是挤压温度,它与合金种类和挤压材形状有关,一般为295℃~455℃,对镁及镁合金的挤压变形特性影响很大,可以通过调节挤压温度来满足挤压比要求,镁合金的挤压比(断面减缩率)通常保持在10∶1~100∶1,采用预挤压坯锭挤压时,可以采用更大的挤压比。同时,挤压镁合金时会产生大量热能,采取适当措施散发这部分热量,否则,被挤件温度有可能会超过固相线温度,形成热裂纹。
挤压结束后,先取出模具,并从锭坯上切下成品件,再取出锭坯余料,余料可以循环使用。如果立即装上新锭坯,并与锭坯余料焊合后,可以连续挤压,预留纵向槽,以便新旧锭坯卷入的气体排出,可采用铸造、机械加工和挤压法加工纵向槽。用挤压工艺可以生产双金属复合材料。
为了使挤压材具有弥散分布的细小的显微组织和较高的力学性能,须将挤压材进行在线淬火,即在挤压机上向出模的高温挤压材吹强气流或水。应注意的是,冷却水不得与热模接触,否则模型会开裂。挤压材料人工时效后,力学性能显著上升,它们的典型性能见表。粉末挤压ZK60A合金有很高的抗压强度,因其晶粒极小。
ZK60、WE43、WE54合金的热处理状态为T5(人工时效)或T6(固溶+人工时效)。T5和T6状态的ZK系列镁合金挤压材,不但有各向同性的强度性能,而且塑性也不低。热处理对WE系镁合金挤压材的室温力学性能影响不大,但能较明显地提高其高温性能稳定性。AZ61及AZ80镁合金也可以时效强化,但在T5、T6处理后,强度性能仅略有提高,可是塑性却明显下降。一般情况下,ZK型镁合金具有良好的强度与塑性匹配,无需进行热处理。
ZK60A合金挤压材
ZK60A镁合金是一种不含Al的Mg-Zn系合金,含Zn4.8-6.2、Zr 0.45,共余为Mg,Zr的含量一般为0.5%。F及T5状态挤压材的室温平均弹性模量44.8GPa。室温抗拉强度/伸长率:F材料的340MPa/14%,T5材料的305MPa/11%;室温屈服强度:F材料的360MPa、T5材料的305MPa。
ZK60A合金挤压材纵向试样回转梁(R=-1)轴向负载(R=0.25)的室温疲劳断裂试验结果见图1-图4。
ZK60A合金锻件
ZK60A-T5合金锻件的回转和弯曲梁(R=-1)疲劳强度见图5及图6,纵向试样,带切口,Kt=2,经机加工和抛光,试样取自车轮轮缘。
弹性模量室温平均值44.8MPa、室温抗拉强度/伸长率305MPa/16%、室温屈服强度205MPa的ZK60A的切线和轴向轮缘回转和弯曲梁试样的室温疲劳强度见下表,试样经抛光。
AZ31B-F合金挤压材的室温平均弹性模量44.8 GPa,抗拉强度260 MPa,伸长率15%,屈服强度200 MPa。室温下光滑试样于干燥大气中、水中、含冷凝水空气中和其它物质中进行。
轴向负载(R=0.25)疲劳断裂试验时,其疲劳性能与疲劳寿命见表。
美国衣阿华大学的斯蒂芬斯(R. I. Stephens)和施拉德(C.D. Schrader)用 12.7 mm 厚的AZ31B- H24镁合金测试了它在室温试验室条件的疲劳裂纹成长特性(见下图)。试样的平均室温弹性模量44.8 GPa,抗拉强度250 MPa,伸长率21 %,屈服强度150 MPa,负载条件R=0.1、0.4、0.7,试样取向T-L、厚12.7 mm,频率5Hz-50 Hz。
在镁合金的应用产品中,压力加工产品、铸造产品以及非结构应用呈三足鼎立之势,自镁实现工业化应用以来,镁在冶金工业(配制铝合金、钢脱硫、球墨铸铁等)中的应用占50%-65%,加工镁及镁合金半成品(板、带、管、棒、型材)材料的占比很小,仅为1%-1.6%,挤压材(管、棒、型材)占的比例更小,只有0.4%-0.8%。因此,每年须进行表面处理的挤压镁材量不多。挤压镁材的表面处理方法有氧化着色、阳极氧化、电镀等。
挤压镁材的氧化着色
挤压镁材氧化着色工艺流程及参数见表1,其预处理(脱脂、水洗、酸洗、光亮蚀洗)及氧化处理后的水洗等处理与前面介绍的相同。
槽液配制与管理
根据槽的容积计算所需的化工产品,加水至1/2容积,将化工产品一一加入槽中,对除油槽与氧化槽加热、开风机、搅拌,而对酸洗槽与光洗槽在室温下开风机、搅拌。搅均后加水至规定容积,再搅拌均匀,取样分析,试氧化,合格后方可正式生产。在使用期间应定期对槽液成分进行化学分析。
氧化膜缺陷修补
挤压材表面上的氧化膜应均匀、牢固,若检查不合格,可作如下修补:
清除不合格膜层,重新处理。
局部清除有缺陷的氧化膜,再用补色液着色,常用的补色液见表2。用汽油或工业酒精擦净油污后,用玻璃砂布轻轻打磨,露出干净的镁,以压缩空气吹净粉尘,用浸以酒精液的纱布擦净表面,晾干后用缠锦纱或棉花的玻璃棒或木棒,蘸上氧化液在表面上反复涂擦约35s,晾干后即可。
目前镁合金制造工艺技术能够有效的实现利用镁合金制造集成性能较高的车辆结构构件,一方面,镁合金具有良好的铸造性,加工条件较为简答,加工工艺简单,且加工有效性较高,不易产生废品;另一方面,镁合金较高的阻尼系数,能够增添汽车结构的抗震性,十分符合汽车工业制造对于材料的多项功能的追求目标。目前,镁合金在车辆结构构件的制造中广泛应用,例如在车辆的传动系统中,在离合器外壳、齿轮箱外壳、离变速箱外壳等零件的铸造方面就大量的使用了镁合金。在车体结构中,车门内衬、仪表板、车灯外壳、引擎盖、车身骨架、底盘系统转向架等也大量使用了镁合金压铸产品。许多国外发达国家对于镁合金的应用程度要远远国内汽车制造业,例如品牌兰博基尼、保时捷等都采用了镁合金减重设计,其车辆的相关性能都得到了很好的提升。但由于国内基于汽车安全性的考虑,对于镁合金材料的应用情况较少,仍多用铝合金的形式来对汽车重量进行控制。
现阶段镁合金在汽车上的应用主要集中于车身、发动机和内饰件3大部分,产量持续快速增长。欧洲范围内,60多种汽车零部件已采用镁合金为材质,车用镁合金铸件的使用量正在以年均25%的速度增加;北美是世界上镁合金在汽车中用量大,使用和研发中的镁合金零部件有100多种;日本汽车业在越来越多的零件上采用镁合金材质,包括变速杆、座椅架等。大众公司的帕萨特、奥迪A4和A6等汽车的齿轮箱壳体使用AZ91D镁合金,比铝合金部件减重25%。美国福特、美国通用、日本三菱等汽车公司已采用镁合金零部件替代原有的铝合金汽车零部件和塑料零部件,包括:发动机壳体和盖、变速箱壳体和盖、离合器壳体、液力变扭器壳体、发电机托架、刹车踏板支架、车身壳体框架、车门、车轮、方向盘、仪表盘、后桥驱动器、转向节、座椅支架、把手等100多种零部件。