天津大港全新车牌识别系统道闸
-
面议
车牌识别系统 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。
车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。
在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。《停车库(场)车辆图像和号牌信息采集与传输系统技术要求》中,车牌识别技术成为车辆身份识别的主要手段。
车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。
汽车牌照号码是车辆的"身份"标识,牌照自动识别技术可以在汽车不作任何改动的情况下实现汽车"身份"的自动登记及验证,这项技术已经应用于公路收费、停车管理、称重系统、交通诱导、车辆调度、车辆检测等各种场合。
牌照定位
自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,后选定一个佳的区域作为牌照区域,并将其从图像中分离出来。
技术特点
车牌识别技术是现代智能交通系统重要组成部分,其应用十分广泛。它以计算机视觉处理、数字图像处理、模式识别等技术为基础,对摄像机所拍摄的车辆图像或者视频图像进行处理分析,得到每辆车的车牌号码,从而完成识别过程。通过一些后续处理技术其可以实现停车场出入口收费管理、高速公路超速自动化管理、等等功能。
我国标准汽车牌照是由汉字、英文字母和阿拉伯数字组成,汉字识别与字母和数字的识别有很大的区别,汉字的识别增加了识别的难度;
我国汽车车牌的悬挂位置不统一;
其他国家的汽车牌照格式(如汽车牌照的尺寸大小,牌照上字符的排列等)通常只有一种,而我国则根据不同车辆、车型、用途规定了多种牌照格式,分为普通车轿车、使馆车、警车、军车等,并且通常汽车牌照中也分大车和小车;
我国汽车牌照的底色和字符颜色有多种组合,我们日常生活中常见的有蓝底白字车牌、黄底黑字车牌、以及白底黑字车牌等等。
体系结构
一个车牌识别系统的基本硬件配置是由摄像机、主控机、采集卡、照明装置组成。而软件是由一个具有车牌识别功能的图像分析和处理软件,以及一个满足具体应用需求的后台管理软件组成。
车牌识别系统于是出现了两种产品形式,一种是软硬件一体,或者用硬件实现识别功能模块,形成一个全硬件的车牌识别器,例如DSP。另外一种形式是开放式的软、硬件体系,即硬件采用标准工业产品,软件作为嵌入式软件。两种产品形式各有优缺点。开放式体系的优点是由于硬件采用标准工业产品,运行维护容易掌握,备品备件采购可以从任何一家产商获得,不用担心因为一家产商倒闭或供货不足而出现产品失效或采购困难。而软硬件一体式产品,对于使用者操作产品时更易操作及控制。对于后期的维护调试也更易于掌握。
图像处理技术:运用图像处理技术解决汽车牌照识别的研究早始于80年代,但国内外均只是就车牌识别中的某一个具体问题进行讨论,并且通常仅采用简单的图像处理技术来解决,并没有形成完整的系统体系,识别过程是使用工业电视摄像机拍下汽车的工前方图像,然后交给计算机进行简单的处理,并且终仍需要人工干预,例如车辆牌照中省份汉字的识别问题,1985年有人利用常见的图像处理技木方法提出汉字识别的分类是在抽取汉字特征的基础上进行的,根据汉字的投影直方图选取浮动闭值,抽取汉字在竖直方向的峰值,利用树形查表法进行汉字的粗分类;然后根据汉字在水平方向的投影直方图,选取适当闭值,进行量化处理后,形成一个变长链码,再用动态规划法,求出与标准模式链码的小距离,实现细分米完成汉字省名的自动识别。
传统模式识别技术。传统模式识别技术指结构特征法,统计特征法等。90年代,由于计算机视觉技术的发展,开始出现汽车牌照识别的系统化研究。1990年AS.Johnson等运用计算机视觉技术和图像处理技术实现了车辆牌照的自动识别系统。该系统分为图像分割、特征提取和模板构造、字符识别等三个部分。利用不同闽值对应的直方图不同,经过大量统计实验确定出车牌位置的图像直方图的闽值范围,从而根据特定闽值对应的直方图分割出车牌,再利用预先设置的标准字符模板进行模式匹配识别出字符。