磁氧O2氧监测系统
-
¥9999.00
测量范围:0.00~10/100/1000PPm
精 度:≤±2%FS
稳 定 性:零点漂移≤±1%FS/7d
量程漂移≤±1%FS/7d
重 复 性:≤±0.5%
样气流量:1~1.5L/Min
响应时间:τ90≤30秒
样气压力:0.05 MPa≤入口压力≤0.1MPa
分 辨 率:0.01%
工作环境:温度:-5℃~45℃
湿度:≤90%RH
系统主要技术参数
(1)测量范围:O2(0.0~5.00)%(量程可选);
(2)大允许误差:±0.1%F.S;
(3)分辨率:0.01%;
(4)稳定性:零点漂移±1%FS/7d;
量程漂移±1%FS/7d;
(5)重复性:0.1%;
(6)预热时间:10min;
(7)样气流量:(0.3~0.5)L/ min;
(8)样气接口尺寸:G1/2;
(9)电器接口尺寸:1/2NPT;
(10)工作电源:AC220V±10%,50HZ;
(11)工作环境:温度 -5℃~+45℃;
湿度 ≤90%RH;
(12)防爆等级:ExdIICT6;
(13)模拟输出:4~20mA;
(14)样气压力:0.05MPa≤入口压力≤0.1Mpa。
氧气分析仪在石化行业是一种比较常见的过程分析仪表,不仅广泛应用于加热炉、化学反应容器、空分、工业制氮等场合中混合气体内氧气浓度的检测,还大量用于锅炉水中溶解氧、污水处理装置外排水溶解氧的检测。那么你见过的氧分析仪有哪几种,有哪些优缺点,我们一起来盘点一下
氧化锆分析仪
图片
基本原理:氧化锆分析仪的检测原理是氧浓差电池。在氧化锆材料中添加一定的添加剂后通过高温烧结,在一定的温度下成为氧离子的固体电解质,在元件的内外侧焙烧铂电极就成了氧化锆氧传感器。在一定温度下,内外两电极间产生随两侧氧浓度差变化的浓差电势。当固定了参比电极侧的氧浓度(通常以空气作参比气,空气中氧含量为20.95%),则浓差电势只随测量侧氧浓度的变化而变化。
优点:仪表工作稳定、维护量小。
缺点:缺点是工艺样气温度猝然变冷、或含有水蒸气时锆管容易炸裂。此外,在高温下若被测气体中含有H2、CO等还原性气体时,会发生还原反应消耗O2,导致仪表测量值较实际偏低,这一现象在微量氧含量检测时尤为明显。
激光氧分析仪
图片
基本原理:
1.朗伯-比尔定律
TDLAS技术是一种高分辨率的光谱吸收技术,半导体激光穿过被测气体的光强衰减可用朗伯-比尔(Lambert-Beer)定律表述式中,IV,0和IV分别表示频率V的激光入射时和经过压力P,浓度X和光程L的气体后的光强;S(T)表示气体吸收谱线的强度;线性函数g(v-v0)表征该吸收谱线的形状。通常情况下气体的吸收较小,可用式(4-2)来近似表达气体的吸收。这些关系式表明气体浓度越高,对光的衰减也越大。因此,可通过测量气体对激光的衰减来测量气体的浓度。
2.光谱线的线强
气体分子的吸收总是和分子内部从低能态到高能态的能级跃迁相联系的。线强S(T)反映了跃迁过程中受激吸收、受激辐射和自发辐射之间强度的净效果,是吸收光谱谱线基本的属性,由能级间跃迁概率及处于上下能级的分子数目决定。分子在不同能级之间的分布受温度的影响,因此光谱线的线强也与温度相关。如果知道参考线强S(T0),其他温度下的线强可以由下式求出式中,Q(T)为分子的配分函数;h为普朗克常数;c为光速;k为波尔兹曼常数;En为下能级能量。各种气体的吸收谱线的线强S(T0)可以查阅相关的光谱数据库。
优缺点:不受背景气体的影响,能够自动修正压力、温度对测量的影响,高准确性,,快速反应,运行稳定仅需少量的维护。调制光谱检测技术,对样品的洁净程度要求不高,非接触测量,可测量腐蚀性气体中的氧含量;样品不需要除水,但不能含有冷凝液滴;原位式安装,不需要采样系统,适用于压力低、管径大的场合,但需要用高纯氮气吹扫视窗;当压力高、管径小时可采用采样式。
在工业生产中,很多行业都会使用反应釜、离心机等密闭装置,例如制药、化工、生物等,反应釜、离心机在使用中,其内部氧气浓度对生产效率、产品质量和生产安全有着直接影响。所以,为了生产效率、产品质量和安全生产,需要配备氧含量分析系统来配合生产工作。
反应釜、离心机氧含量分析系统的作用是实时监测反应釜、离心机内的氧气浓度,通过监测数据来实时为供氧和排氧提供准确依据。其具体作用如下:
1、通过对氧气含量的实时监测,能够掌控是否进行供氧或者排氧动作,提高生产效率。
2、在制药和化工等生产中,氧浓度对产品质量的影响很大,通过氧含量分析系统实时监测釜内氧浓度,能够产品的稳定性和一致性,提升产品质量。
3、实时监测釜内的氧气含量能够及时发现工艺中的安全隐患,避免因氧气含量过高引发的安全事故,能够达到预防安全事故发生的作用。