马鞍山经营导热镁合金材料高导热镁合金型材
-
¥118.00
镁合金的发展对我国有重大的战略意义。我国镁矿资源处于世界,发展镁合金有助于缓解我国传统金属矿产的资源危机。镁合金在民用领域的应用,对缓解能源危机、降低污染,特别是提高“中国制造”竞争力有重大的战略意义。
镁合金汽车轮毂:2014年,山西银光镁业的镁合金汽车轮毂销售量比上年增长了三倍,主要是差异化的汽车售后市场。预计2015年会有整车企业应用于电动客车,镁合金轮毂的汽车可节油15%。
镁合金座椅:东风汽车铝合金车身混合动力客车使用了镁合金座椅,用镁型材进行焊接,零件整体减重了25.7%。
镁合金轮椅骨架:生产商是山西省古交市银河镁业有限公司,研发制作镁合金型材深加工产品的企业,主要生产有镁合金轮椅系列、镁合金拐杖、担架、折叠床、桌子等。镁合金轮椅车架通过欧盟认证,出口欧洲市场。
镁合金碱性锅:生产商是北京鼎盛泰来科贸有限公司,镁合金碱性锅重1.3公斤,重量轻,能够中和酸性食物,导热快,为肉类排酸让食物更美味,还能为人体补充镁离子,防治疾病。
镁合金自行车一体轮:生产商是广州镁业金属科技有限公司,已经有国内外自行车厂家批量供货。其优势是稳定性、弹性和减震性都很好,重量轻,低碳环保。
镁合金户外和休闲用品:浙江泰普森已经开始批量生产镁合金材质的系列产品,在全球销售,获得消费者的欢迎。从2014年到现在,采用该类新兴材料生产的产品,出口额已经超过了3000万美元。
镁空气电池:生产商是大连爱镁瑞电池有限公司,镁空气电池使用自来水甚至喝水、污水作为电解液,其自带的LED灯可持续照明90至100小时,一次可为20部智能手机充电。这种镁空气电池已经在四川地震和尼泊尔地震抢险中作为应急电源应用。
变形镁合金锭的基本铸造工艺参数是速度、温度、冷却水压和结晶器高度,个的可调可控力度大,结晶器一旦制造完毕,它的高度就定下来了。此外,还有一些未纳入制度的相对不太重要的参数,它们也对铸锭组织、裂纹敏感性、致密度、表面品质有一定的影响,例如结晶器锥度、内表面粗糙度、水孔大小、水的喷射角度,铸造漏斗直径、孔径、孔数、沉入熔体深度,等等。
在不同的铸造速度时,铸造速度越大,冷却强度也大,液穴深度随着变小。结晶器高度变小时,强却强度也随着变弱。
在铸造镁合金圆锭时,在一般情况下,采用高一些结晶器,可以避免通心裂纹。加高结晶器高度,如果调低铸造速度,则表面会产状淬火裂纹。对于热脆性较敏感的合金,若采用低结晶器,相应降低铸造速度,但此时锭表面的冷隔成层缺陷却会增多,同时还可能产生横向裂纹。因此,应合理确定结晶器高度与铸造速度,一旦结晶器高度确定了,也就可以选定铸造速度,铸得既无裂纹,表面品质又好的锭坯。
铸造速度一定时,结晶器越高液穴也越深,但当结晶器高度大于200mm后,提高结晶器高度,液穴的变化也不十分明显。
提高结晶器高度,也即相对降低了凝固速度,可延长金属中间化合物的生长时间。结晶器越高,对镁合金金属中间化合物尺寸的增大和数量的增多影响也越明显。在铸造200mm×800mm扁锭时,中间金属化合物的偏析与结晶器高度的关系见表1。
综合各方面的因素,当铸造直径350mm~690mm锭时,结晶器高度以145mm~250mm为佳;铸造200mm×800mm扁锭的适宜结晶器高度为250mm;铸造260mm×960mm的结晶器高度为300mm。
MB15合金的热裂纹敏感性较大,对水冷强度非常敏感,可采取推迟二次水冷方法,不但不会产生热裂纹,而且铸锭表面品质也有所提高。
镁合金的熔炼铸造工艺与铸锭品质对镁材质量、成品率高低攸攸相关,实践统计证明,镁材缺陷的75%以上都或多或少是由于铸锭带来的。镁合金锭的铸造的铸造工艺有:铁模铸造,水冷模铸造与半连续铸造。前两种工艺现在很少用了,所生产的锭坯还不到总数的5%。半连续铸造法的优点可概括为:
凝固速度快,改善了铸锭组织,减少了成分偏析,提高了锭坯的力学性能。
由于改善了熔铸系统,减少了氧化夹杂及其他非金属夹杂物,金属杂质含量也有所下降,合金纯净得到了很大提高。熔铸设备对MA8合金的纯净度也有一定的影响。
合理的结晶顺序,铸锭的致密度得到提高,锭中心的疏松大幅度地下降。
锭的长度有很大提高,切头、切尾等几何废料的相对量有很大减小。
实现了机械化或甚至半自动化生产,劳动条件得到很大改善,劳动生产率显著提高,产品品质也有很大提高。
当然,尽管半连续铸造法的优点很多,不可避免地也会存在一些不足之处,诸如:
铸锭内部因凝固速度快,会产生很大的内应力,而合金的塑性又不大,因而裂纹倾向性大,废品率比铁模铸造时的大得多,铁模铸造几乎无一裂纹。
由于凝固速度快,有些合金元素如锰会产生较严重的晶内偏析,为了消除这种缺陷,须进行长时间的均匀化退火,因而生产成本上升,而且性能得不到充分的。
由于凝固速度大,液穴内的温度梯度也会相应地上升,虽不利于金属中间化合物颗料的过于长大,但却使它易于产生。
镁及镁合金熔体易与氧、氮、水气等发生反应,镁与1g氧化合释放598J热,而铝释放的为531J,比镁释放的低11.2%。通常,氧化物生成热越大,分解压越低,则与氧的亲和力越强。由氧化物生成热和分解压数值可知,镁与氧的亲和力比铝与氧的大,镁与氧的氧化膜MgO疏松,致密度系数α=0.79,比Al2O3的1∶28小得多,没有保护作用。温度较低时,镁的氧化速率不大,500℃时显著加快,超过700℃则急剧上升,熔体一旦遇氧就会发生急剧氧化而燃烧,放出大量的热。反热生成的MgO绝热性能好,反应界面产生的热不能及时向外散发,从而提高界面温度,造成恶性循环加速镁的氧化,燃烧反应更加激烈。当界面反应温度镁的沸点1107℃时,熔体大量气化,发生爆炸。
无论是固态镁还是液态镁均能与水发生反应,生成MgO并放出H2,H2又与O2化合生成水,水又受热急剧汽化,会导致猛烈的爆炸。因此,熔炼镁合金的炉料、工具、熔剂等均应干燥。
镁可与N2反应生成Mg3N2,不过Mg-N2反应比Mg-O2反应缓慢得多。镁与氩、氦、氖等不发生化学反应,可防止镁熔体燃烧,但不能阻止镁的蒸发。因此,在熔炼镁合金时采取有效的措施防止其氧化、燃烧与爆炸,目前的措施有熔剂熔炼工艺与无熔剂熔炼工艺。然而熔剂形成的膜层隔绝空气的效果并不十分理想。
压铸镁合金时采用熔剂熔炼会带来操作上的诸多困难,特别是热室压铸尤为不便,同时熔剂夹杂更加,上世纪70年代开发的无熔剂熔炼工艺在镁合金熔炼发展史上有着里程碑意义。大量研究表明,CO2、SO2、SF6等气体对镁及镁合金熔体有良好的保护作用,特别是SF6的效果尤为。
镁合金零件早期采用金属型重力铸造,经研究发现,由于镁合金的熔点低、密度低,大多数合金的流动性比较好,且比热容低,容易获得较高的冷速,因而在适中的压力下可以获得理想的铸件。根据相关报道,奥迪某款车型的镁合金仪表板横梁,在装有自动浇注机构的锁模力为24.5MN的冷室压铸机上成功实现压铸,因此本文介绍的镁合金仪表板横梁采用冷室压铸是完全可行的。
针对仪表板横梁的结构性能要求,结合AM60B的疲劳性能对内在缺陷非常敏感的特点,仪表板横梁的压铸工艺过程中要求压铸过程充型平稳,实现顺序凝固,避免各种铸造缺陷的发生。这样才能在得到缺陷少、品质高的铸件的同时,提高生产效率,也为实现新材料在仪表板横梁上应用奠定了工艺基础。