温州泰顺县计量器具第三方量具外校计量检测机构
-
¥88.00
世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理
网络分析仪一种能在宽频带内进行扫描测量以确定网络参量的综合性微波测量仪器。全称是微波网络分析仪。网络分析仪是测量网络参数的一种新型仪器,可直接测量有源或无源、可逆或不可逆的双口和单口网络的复数散射参数,并以扫频方式给出各散射参数的幅度、相位频率特性。自动网络分析仪能对测量结果逐点进行误差修正,并换算出其他几十种网络参数,如输入反射系数、输出反射系数、电压驻波比、阻抗(或导纳)、衰减(或增益)、相移和群延时等传输参数以及隔离度和定向度等。矢量网络分析仪是微波毫米波测试仪器领域中为重要、应用为广泛的一种智能化测试仪器,在业界享有“微波/毫米波测试仪器”的美誉,主要用于被测网络散射参量双向S参数的幅频、相频及群时延等特性信息的测量,广泛应用于以相控阵雷达为代表的新一代电子装备研制、生产、维修和计量等领域,还可以应用于制导、隐身及反隐身、航空航天、卫星通信、雷达侦测和监视、教学实验以及天线与RCS测试、元器件测试、材料测试等诸多领域矢量网络分析仪,它本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况. 而对于双端口测量,则还可以测量传输参数. 由于受分布参数等影响明显,所以网络分析仪使用之前进行校准。
在微波电路的设计和计算中,需要对所用元、器件特性的全部网络参数进行全面定值。而微波元、器件中,包括微波晶体管,大多采用S参数(散射参数)来表述它们的特性。一般二端口网络需要有四个散射参数(S11、S22、S12和S21),才能对其全面定值。因此往往采用测量的方法来确定网络的参数。
图2 网络分析仪框图
图2 网络分析仪框图
20世纪60年代中期,出现能在宽频带范围内扫频测量并能显示全部网络S参数的模值和幅角的多功能仪器,这就是微波网络分析仪。因此网络分析仪的基本部分实际上就是一台S参数测量仪。方框图如图2所示。
由于测定了网络的S参数后,网络的其它各种特性参量都可以从S参数中导出,因此,微波网络分析仪具有多种功能。
网络分析仪是在四端口微波反射计(见驻波与反射测量)的基础上发展起来的。在60年代中期实现自动化,利用计算机按一定误差模型在每一频率点上修正由定向耦合器的定向性不完善、失配和窜漏等而引起的误差,从而使测量度大为提高,可达到计量室中精密的测量线技术的测量度,而测量速度提高数十倍 [2] 。
原理编辑 语音
一个任意多端口网络的各端口终端均匹配时,由第n个端口输入的入射行波 an将散射到其余一切端口并 发射出去。若第m个端口的出射行波为bm,则n口与m口之间的散射参数Smn=bm/an。一个双口网络共有四个散射参数 S11、S21、S12和S22。当两个终端均匹配时,S11和S22就分别是端口1和2的反射系数,S21是由1口至2口的传输系数,S12则是反方向的传输系数。当某一端口m终端失配时,由终端反射回来的行波又重新进入m口。这可以等效地看成是m口仍是匹配的,但有一个行波am入射到m口。这样,在任意情况下都可以列出各口等效入射、出射行波与散射参数之间关系的联立方程组。据此可以解出网络的一切特性参数,如终端失配时的输入端反射系数、电压驻波比、输入阻抗以及各种正向反向传输系数等。这就是网络分析仪的基本的工作原理。单端口网络可视为双口网络的特例,在其中除S11之外,恒有S21=S12=S22。对于多端口网络,除了一个输入和一个输出端口之外,可在其余一切端口都接上匹配负载,从而等效为一个双端口网络。轮流选择各对端口作为等效双口网络的输入、输出端,进行一系列测量并列出相应的方程,即可解得n端口网络的全部n2个散射参数,从而求出n端口网络的一切特性参数。 图3左为四端口网络分析仪测量S11时测试单元的原理示意,箭头表示各行波的路径。信号源 u输出信号经开关S1和定向耦合器D2输入到被测网络的端口1,这就是入射波a1。端口1的反射波(即1口的出射波b1)经定向耦合器 D2和开关传到接收机的测量通道。信号源u的输出同时经定向耦合器D1传到接收机的参考通道,这个信号是正比于a1的。于是双通道幅度-相位接收机就测出b1/a1,即测出S11,包括其幅值和相位(或实部和虚部)。测量时,网络的端口2接上匹配负载R1,以满足散射参数所规定的条件。系统中的另一个定向耦合器D3也终接匹配负载R2,以免产生不良影响。其余三个S 参数的测量原理与此类同。图3右为测量不同Smn参数时各开关应放置的位置。
图3 网络分析仪
图3 网络分析仪
在实际测量之前,先用三个阻抗已知的标准器(例如一个短路、一个开路和一个匹配负载)供仪器进行一系列测量,称为校准测量。由实测结果与理想(无仪器误差时)应有的结果比对,可通过计算求出误差模型中的各误差因子并存入计算机中,以便对被测件的测量结果进行误差修正。在每一频率点上都按此进行校准和修正。测量步骤和计算都十分复杂,非人工所能胜任。
上述网络分析仪称为四端口网络分析仪,因为仪器有四个端口,分别接到信号源、被测件、测量通道和测量的参考通道。它的缺点是接收机的结构复杂,误差模型中并未包括接收机所产生的误差。
参数编辑 语音
参数(散射参数)用于评估 DUT 反射信号和传送信号的性能。 参数由两个复数之比定义,它包含有关信号的幅度和相位的信息。 参数通常表示为:
输出 输入
输出:输出信号的 DUT 端口号。
输入:输入信号的 DUT 端口号。
例如,参数 S21 是 DUT 上端口 2 的输出信号与 DUT 上端口 1 的输入信号之比,输出信号和输入信号都用复数表示。
当启动平衡 - 不平衡转换功能时,可以选择混合模 S 参数。
新发展编辑 语音
1973年又研制出六端口网络分析仪。它利用一个由定向耦合器和混合接头(魔 T)组成的六端口网络作为测量单元,除二个端口分别接信号源和被测件之外,其余四个端口均接到幅值检波器或功率计。通过检出的四个幅值的适当组合,可以求出被测网络散射参数的模和相位。它不必使用复杂的双通道接收机来取得相位信息,从而使测量系统的硬件大为简化。此外,它有超过必需数目的冗余测量端口,可以利用冗余数据之间互相核对来提高测量结果的可信性。但它的计算工作比四端口网络分析仪要复杂得多。采用双六端口网络分析仪来测量双端口网络,即用一个六端口网络仪接在被测网络的端口1,另一个接在端口2,可在测量过程中避免开关转换或人工倒转被测网络的输入端和输出端,进一步提高了测量的度
世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理脉冲信号发生器是信号发生器的一种。信号发生器按信号源有很多种分类方法,其中一种方法可分为混和信号源和逻辑信号源两种。其中混和信号源主要输出模拟波形;逻辑信号源输出数字码形。混和信号源又可分为函数信号发生器和任意波形/函数发生器,其中函数信号发生器输出标准波形,如正弦波、方波等,任意波/函数发生器输出用户自定义的任意波形;逻辑信号发生器又可分为脉冲信号发生器和码型发生器,其中脉冲信号发生器驱动较小个数的的方波或脉冲波输出,码型发生器生成许多通道的数字码型。如泰克生产的AFG3000系列就包括函数信号发生器、任意波形/函数信号发生器、脉冲信号发生器的功能。另外,信号源还可以按照输出信号的类型分类,如射频信号发生器、扫描信号发生器、频率合成器、噪声信号发生器、脉冲信号发生器等等。信号源也可以按照使用频段分类,不同频段的信号源对应不同应用领域。1、脉冲上升沿、下降沿可调;
2、可输出上升沿、下降沿较快的方波;
3、可输出上升沿、下降沿较慢的梯形波、三角波、锯齿波。频率范围:100Hz~10MHz 6位数显。
脉冲固有延时时间:80nS左右。
脉冲延时调节范围:30nS~3000μS。
脉冲宽度范围:30nS~3000μS。
脉冲边沿范围:10nS~1000μS。
脉冲过冲:≤5%。
脉冲输出幅度:200mV~5V。
基线直流偏移:-1V~+1V连续可调。
输出阻抗:50Ω(终端匹配)。
外测频率范围:50Hz~10MHz脉冲信号发生器适用于电力负荷控制(管理)终端的检测,主要使用单位是各省市电力试验研究院(中试所)、计生产研究部门(生产厂)、电力表计使用验收部门(供电公司)等。脉冲信号发生器分为通用型和型两大类。
通用型脉冲信号发生器,用于实验室进行一般性科学实验。它的特点,也是与产生脉冲信号的单元电路的主要区别,是所产生的脉冲信号的参数(如重复频率、脉冲宽度、幅度、极性及逻辑电平)都可调节,尤其是重复频率的变化范围较宽,输出阻抗能与测试用同轴电缆的特性阻抗相匹配,输出电平能与被测试电路所用器件的逻辑电平相适应,以满足测试的要求。
型脉冲信号发生器,用于某些设备的研制、测试、生产和维修。这类脉冲信号发生器或是波形复杂,或是某些指标要求特殊。例如电视图像信号发生器,它所产生的信号有方格信号、棋盘格信号、彩带信号或某一单色信号等。这些复杂波形是由多种不同频率、不同极性、不同幅度、不同脉宽的简单脉冲合成的。参与合成的诸多简单脉冲信号,相互间在时间的相对关系上保持严格的同步关系。它们不能通过各个互不相关的单元脉冲电路产生各种脉冲相加而获得。电路的组成要采用数字电路的技术,以维持各个简单脉冲之间的同步关系。
世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理电子频率计数器,功能是测量电子频率。它根据频率的不同范围可把频率计数器分为两类:通用频率计数器和微波频率计数器(后者较为精密)。电子频率计数器简称频率计数器 [1] ,根据频率的不同范围可把频率计数器分为两类:通用频率计数器和微波频率计数器。前者的测量范围一般在1GHz以下;而微波频率计数器提供从DC到数十GHz的频率测量,可覆盖整个射频、微波频段。1、高频测量是频率计数器特的优势,普通示波器很难达到。频率测量很简单,将信号接入频率计数器输入端后再调节功能键至频率测量,屏幕即显示当前频率值。单一的频率测量只需要一个输入通道即可。
2、频率计数器周期为波形振动一次所需要的时间,是频率的倒数。大多数频率计数器都会提供这项功能。信号周期的测量方法和频率测量基本相似。
3、频率计数器频率比是对两个频率进行比较,它可用来测试倍频器或前置换算器(分频器)的性能。在许多仪器系统中,两个频率的比值远比两个立的频率值有意义。例如在比率电容传感器研发中,工程师关心的是两个信号的频率比。
4、频率计数器统计功能:可以用来统计和显示当前输入数据的标准偏差,并能选择统计次数。标准偏差是描述信号一致性好环的参数。标准偏差越大,表示信号幅值相差比较大,一致性差;而较小的标准偏差表示信号的幅值都很接近,信号波动小。
电子频率计数器 - 应用领域
1、频率计数器功能是根据其应用来设计的。频率计数器常见的应用是确定发射机和接收机的特性。发射机的频率进行检验和校准,才能符合有关规章制度的要求。频率计数器能对输出频率和一些关键的内部频率点(如本振)进行测量,查明无线电发射时候是否满足技术指标。
2、频率计数器的另一些应用包括计算机领域,在此领域中的数据通信、微处理器和显示器中都使用了时钟。对性能要求不高的应用领域包括对机电产品进行测量。
3、频率计数器的早期应用之一是作为信号发生器的一部分。在信号发生器信号输出之前,先通过频率计数器部件测量该信号,测量到的结果被转换为模拟信号用于反馈控制信号发生器的频率,直到达到所需要的数值,从而能得到稳定的信号输出。很多信号发生器中都集成了频率计数器的简单功能。例如OI1842信号发生器也集成了测量范围为0.1Hz~50MHz的频率计功能。
世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理介质损耗测量仪,是发电厂、变电站等现场全自动测量各种高压电力设备介损正切值及电容量的仪器。由于采用了变频技术能在强电场干扰下准确测量。低频电子电压
表一次操作,微机自动完成全过程的测量。是理想的介损测量设备。M-8000变频抗干扰介质损耗测量仪还可以用于电容式电压互感器(CVT)的测量。介质损耗测量仪同样适用于车间、试验室、科研单位测量高压电器设备的tgδ及电容量;对绝缘油的损耗测试、更具有方便、简单、准确等优点。 [1]
介质损耗测量仪可用正、反接线方法测量不接地或直接地的高压电器设备。 [1]
介质损耗测量仪内部装备了高压升压变压器,并采取了过零合闸、防雷击等安全保护措施。试验过程中输出0.5KV~10kV不同等级的高压,操作简单、安全。在交流电压作用下,电介质要消耗部分电能,这部分电能将转变为热能产生损耗。这种能量损耗叫做电介质的损耗。当电介质上施加交流电压时,电介质中的电压和电流间存在相角差Ψ,Ψ的余角δ称为介质损耗角,δ的正切tgδ称为介质损耗角正切。tgδ值是用来衡量电介质损耗的参数。 [2]
仪器测量线路编辑 语音
仪器测量线路包括一标准回路(Cn)和一被试回路(Cx)。标准回路由内置高稳定度标准电容器与测量线路组成,被试回路由被试品和测量线路组成。测量线路由取样电阻与前置放大器和A/D转换器组成。通过测量电路分别测得标准回路电流与被试回路电流幅值及其相位等,再由单片机运用数字化实时采集方法,通过矢量运算便可得出试品的电容值和介质损耗正切值。 [2]
仪器内部已经采用了抗干扰措施,在外电场干扰下准确测量。 [2]
控制面板:打印机、键盘、显示和通讯中转。变频电源:采用SPWM开关电路产生大功率正弦波稳压输出。
升压变压器:将变频电源输出升压到测量电压,大无功输出2KVA/1分钟。 [2]
标准电容器:内Cn,测量基准。
Cn电流检测:用于检测内标准电容器电流,10μA~1A。输入电阻〈2Ω。 [2]
Cx正接线电流检测:只用于正接线测量,10μA~1A。输入电阻〈2Ω。Cx反接线电流检测:只用于反接线测量,10μA~1A。输入电阻〈2Ω。 [2]
反接线数字隔离通讯:采用精密MPPM数字调制解调器,将反接线电流信号送到低压侧。隔离电压20KV。 [2]
工作原理编辑 语音
启动测量后高压设定值送到变频电源,变频电源用PID算法将输出缓速调整到设定值,测量电路将实测高压送到变频电源,微调低压,实现准确高压输出。根据正/反接线设置,测量电路根据试验电流自动选择输入并切换量程,测量电路采用傅立叶变换滤掉干扰,分离出信号基波,对标准电流和试品电流进行矢量运算,幅值计算电容量,角差计算tgδ。反复进行多次测量,经过排序选择一个中间结果。测量结束,测量电路发出降压指令变频电源缓速降压到0。
世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理原子荧光光度计是利用硼氢化钾或硼氢化钠作为还原剂,将样品溶液中的待分析元素还原为挥发性共价气态氢化物(或原子蒸汽),然后借助载气将其导入原子化器,在氩—氢火焰中原子化而形成基态原子。基态原子吸收光源的能量而变成激发态,激发态原子在去活化过程中将吸收的能量以荧光的形式释放出来,此荧光信号的强弱与样品中待测元素的含量成线性关系,因此通过测量荧光强度就可以确定样品中被测元素的含量。a)共振荧光----原子吸收的逆过程, 吸收的能量和释放的能量相等。E=hv=hc/λ
b)非共振荧光----能量不相等,非共振荧光线
荧光猝灭,使用氩气做载气和屏蔽气,氩气作用:
a)载气(内气:包括产生的氢化物蒸汽、氢气)
b)屏蔽气(防止氢化物被氧化、抑制荧光猝灭、稳定原子化环境)非色散系统、光程短、能量损失少
结构简单,故障率低
灵敏度高,检出限低,与激发光源强度成正比
接收多条荧光谱线
适合于多元素分析
采用日盲管检测器,降低火焰噪声
线性范围宽,3个量级
原子化,理论上可达到
没有基体干扰
可做价态分析
只使用氩气,运行成本低
采用氩氢焰,紫外透射强,背景干扰小分成四部分:光源、蒸汽发生系统(断续流动和自动进样)、原子化系统、检测系统。
光源
高强度空心阴极灯:纯度高、不自吸、发光稳定、无光谱干扰、寿命长 (3000mAh),仪器灯电流是峰—峰值。
光路
三个透镜,无色散元件
原子化器
电热屏蔽式石英炉,氩氢火焰
1、炉芯结构
内气----氢化物蒸汽、氩气、氢气
外气----氩气,作用如下:
a)防止氢化物被氧化,提高原子化效率
b)防止荧光猝灭
c)保持原子化环境的相对稳定
2、原子化器的特点
a)主要特点就是原子化,
b)尽可能多产生基态原子
c)采用氩氢焰,紫外透射好,减少光损失
d)没有背景发射,无粒子散射,干扰小
e)稳定性好,只需要氩气,无须额外燃气
f)低温原子化,温度不可调
g)记忆效应小
h)预原子化功能
3、氢化物发生的主要特点
a)没有基体干扰
b)原子化
c)氢化物蒸汽易于原子化,共价氢化物易于解离成自由原子,不需要高温原子化
d)不同价态的元素发生氢化物反应的条件不同,因此可以做价态分析
e)易于富集
分类编辑 语音
按氢化物发生方法分类 [1]
1、间断氢化物(冷蒸气)发生法
早期的AFS仪器均采用间断法(手动),在发生器中先加入一定量的样品溶液,然后加入硼氢化钠溶液发生氢化物。优点是装置简单,但较难自动化。由于它所测得的原子荧光信号与许多因素有关(如氢化物传输效率、发生器与样品体积、载气流量和硼氢化钠流量等)。因此,在实际操作中要得到高灵敏度及较好的重复性就控制好上述因素。
2、连续流动氢化物(冷蒸气)发生法
连续流动法中,酸化后的样品及硼氢化钠溶液均以不同的流速泵入混合器中反应,反应产生的气液混合物经气液分离器分离,废液被排出,含有氢化物的气体送至原子化器中原子化和检测。这种方法可以得到连续信号,但样品和试剂的消耗量都较大,常规检测中较少采用,多用于与液相色谱联用测量中进行形态分析。
3、流动注射氢化物发生法
流动注射法与连续流动法类似,但样品是通过采样阀进行“采样”、“注射”切换。由于样品是间隔输送到反应器中,因而所得的信号为峰型信号,这与连续流动法不同。此方法分析速度较快,但需要在流路中加入采样阀,增加了故障点。目前国内仪器很少采用该技术。
4、 断续流动氢化物(冷蒸气)发生法
断续流动是一种介于连续流动和流动注射之间的技术,其工作分为两个步骤,用蠕动泵分别泵入样品和还原剂,进样量小于混合器前管路容积,稍经停顿并将进样管换入载流中,再运行蠕动泵执行测量,可以得到峰型信号。信号峰的面积与样品的浓度和进样量相关,所以理想状况下可通过控制进样时间来实现不同量的进样,从而达到自动配置标准曲线的目的。
实际使用中,断续流动使用的蠕动泵是一种脉动进样方式,会造成短期取样量稳定性差,长期使用会因泵管疲劳造成取样稳定性差。为了解决这个问题,刘明钟等改进了断续流动,在不改变硬件的基础上,提出了间歇泵进样方式,克服了连续进样浪费试剂溶液、流动注射装置复杂等缺点,是一种较为合理的自动式的氢化物发生进样技术,目前国内大多数中档仪器均采用了这一技术。
还有一种断续流动是采用一个注射泵采样,之后样品和还原剂仍通过蠕动泵进入混合器进行反应,注射泵可定量样品,能够实现校正曲线的自动配置。
5、顺序注射氢化物(冷蒸气)发生法
顺序注射被称为新一代流动注射,由于采用注射泵替代蠕动泵,它克服了蠕动泵的脉动及长期使用老化从而引起信号漂移的问题,使仪器检出限得到较大改进。另外,顺序注射体系中,还原剂和样品的进样量可以准确的任意调节,所以能够实现校正曲线的自动配置。后顺序注射体系中,样品和还原剂的比例调节非常方便,对铅、镉等氢化物发生条件要求严格的元素可以很快调节到佳状态。此外,节省样品和试剂也是顺序注射的一大优势。
顺序注射原子荧光流路有两种: [2] I是由塞梅诺娃提出,其中使用一个注射泵,还原剂和样品通过多位阀注入储样环,并在其中混合反应,产物随载流流出,经气液分离后由氩气带出并与氢气混合后被AFS检测。I [3] I是由王建华等提出,其中有两个注射泵,分别推动样品和还原剂,样品通过多位阀加入,并在储样环中与载流均匀混合,混合液与还原剂通过混合器反应,反应产物经气液分离后进入AFS检测。目前的顺序注射多采用第II种流路。
6、气动控制顺序流动注射氢化物(冷蒸气)发生法
气动控制顺序流动注射是使用一个注射泵采样,之后样品和还原剂通过气动控制进入混合器进行反应,注射泵可定量样品,能够实现校正曲线的自动配置;另外,气动控制代替蠕动泵,也避免了蠕动泵的缺点。
按通道分类
仪器可以分为单道、双道和多道(含三道及三道以上)。
1、单道原子荧光
一次进样只能测一种元素,因仪器体积小、重量轻,一般用于便携式原子荧光。
2、双道原子荧光
一次处理样品,一次进样可以得到两种元素的结果,目前国内原子荧光大多为双道仪器。
3、多道原子荧光(含三道及三道以上)
一次进样可得到三种以上元素的结果,可以提高工作效率,节约试剂,降低测试成本。缺点是各元素测量条件不同,只能互相迁就,或以某个元素的条件为主,这样降低了仪器的灵敏度和准确度。目道原子荧光已发展到,再多的通道已没有实际意义。
按激发光源校正分类
激发光源是有漂移的,特别是汞灯漂移比较严重,导致长期测量稳定性差。
1、无激发光源校正功能
大多数仪器没有激发光源校正功能。测汞时要想得到比较稳定的测量结果,需要提前预热好仪器和汞灯,并且尽量保持实验室温度恒定,汞的稳定性在一定程度上会得到改善。
2.具有激发光源校正功能
近几年新出的仪器有的具有激发光源校正功能,一般有单道校正和多道校正。单道校正即对一固定通道进行校正,一般针对汞灯校正;多道校正一般可对所有通道进行校正。激发光源校正功能有效解决了激发光源导致的长期稳定性问题。
优缺点编辑 语音
目前原子荧光光谱分析已经获得了分析人员的公认,是原子吸收光谱分析、原子发射光谱分析的一种有效补充,在国内已获得广泛的应用。在多种元素、多个领域中均建立了相关标准。
仪器结构简单,AFS的谱线相对简单,元素间谱线重叠少,无需色散系统。
灵敏度高,检出限低,AFS的检出限可以达到pg/mL量级。
选择性好,原子光谱是元素的固有特征,故具有良好的选择性。
试样用量少,AFS一般为1mL左右。
AFS有一定的多元素分析能力,但是需要多通道设计,没有ICP可分析检测的元素种类多。
AFS的适用范围不如AAS和AES广,AFS 仅能测有氢化物(冷蒸汽)发生的十几种元素,AAS和AES可以测70多种元素。 [1]
光谱分类编辑 语音
按波长和测定方法分为γ射线、X射线、光学光谱和微波,而光学光谱又分为紫外、近紫外、可见、近红外和远红外;
按外形分连续光谱、带光谱和线光谱;
按电磁辐射分为分子光谱、原子光谱、X射线能谱和r射线能谱;
原子光谱主要分为发射光谱、吸收光谱和荧光光谱;
原子发射光谱
(AES)
从激发光源的类别分为火花、电弧、直流等离子体(DCP)、微波等离子体(MWP)、和电感耦合等离子体(ICP)等
原子吸收光谱
(AAS)
从原子化器上分为火焰和无火焰,从扣背景方式上有塞曼、氘灯、自吸;
原子荧光光谱
(AFS)
光源主要是空心阴极灯,全部采用蒸汽发生技术,主要分为色散和无色散,以及进样方式上有蠕动泵和注射泵,原子化器有所区别;
应用范围编辑 语音
食品厂、药品厂、化妆品厂、饲料厂、高校、研究所等单位对十二种重金属含量的分析。
可检测元素编辑 语音
市面上的原子荧光光度计产品,使用的均是氢化法原子荧光,多可对十二种重金属含量的分析。
火焰法-氢化法联用原子荧光光谱仪各系统集合了氢化法与火焰法原子荧光光谱仪各系统特点。
世通仪器检测服务有限公司,全国有多个实验室(广东,江苏,陕西,河南,重庆,四川,福建等等)均可上门检测,证书带CANS资质,欢迎来电咨询-陈经理X射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-ray fluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是在金属,玻璃,陶瓷和建材的调查和研究,地球化学,法医学,考古学和艺术品,例如油画和壁画。X射线荧光光谱仪(X-rayFluorescenceSpectrometer,简称:XRF光谱仪),是一种快速的、非破坏式的物质测量方法。X射线荧光(X-rayfluorescence,XRF)是用高能量X射线或伽玛射线轰击材料时激发出的次级X射线。这种现象被广泛用于元素分析和化学分析,特别是在金属,玻璃,陶瓷和建材的调查和研究,地球化学,法医学,考古学和艺术品,例如油画和壁画。XRF用X光或其他激发源照射待分析样品,样品中的元素之内层电子被击出后,造成核外电子的跃迁,在被激发的电子返回基态的时候,会放射出特征X光;不同的元素会放射出各自的特征X光,具有不同的能量或波长特性。检测器(Detector)接受这些X光,仪器软件系统将其转为对应的信号。这一现象广泛用于元素分析和化学分析,特别是在研究金属,玻璃,陶瓷和建筑材料,以及在地球化学研究、法医学、电子产品进料品管(EURoHS)和考古学等领域,在某种程度上与原子吸收光谱仪互补,减少工厂附设的品管实验室之分析人力投入。 当材料暴露在短波长X光检查,或伽马射线,其组成原子可能发生电离,如果原子是暴露于辐射与能源大于它的电离势,足以驱逐内层轨道的电子,然而这使原子的电子结构不稳定,在外轨道的电子会“回补”进入低轨道,以填补遗留下来的洞。在“回补”的过程会释出多余的能源,光子能量是相等两个轨道的能量差异的。因此,物质放射出的辐射,这是原子的能量特性。 [1]
X射线荧光光谱法在化学分析编辑 语音
主要使用X射线束激发荧光辐射,次是在1928年由格洛克尔和施雷伯提出的。到了现在,该方法作为非破坏性分析技术,并作为过程控制的工具,广泛应用于采掘和加工工业。原则上,轻的元素,可分析出铍(z=4),但由于仪器的局限性和轻元素的低X射线产量,往往难以量化,所以针对能量分散式的X射线荧光光谱仪,可以分析从轻元素的钠(z=11)到铀,而波长分散式则为从轻元素的硼到铀。 [2]