丛台区供应铸造镁合金供应铸造镁合金
-
¥110.00
目前,较常见的铸造镁合金有 Mg - Al、 Mg - RF等系列。然而,铸造镁合金的力学性能不够理想,产品形状尺寸存在一定的局限性且容易产生组织缺陷, 导致镁合金的使用性能和应用范围受到很大限制。
镁合金是一种节能、环保新型结构材料,质量轻、硬度大,在强度、刚度、制造性、加工方式、导热性、稳定性等方面,与传统材料相比都具有明显的性能优势,已发展成为除钢铁、铝合金之外的第三大金属结构材料。通过对镁合金的常见焊接技术进行分析研究,择优选用熔化极惰性气体保护焊进行试验研究验证,具体阐述了试验用镁合金板材的熔炼铸造,以及焊接过程中接头对接形式、焊丝选用、焊接电流设置、焊接速度、气流量、焊后热处理等焊接关键技术,后对焊接接头的外观、力学性能及硬度进行测定,综合分析后表明镁合金根据文中焊接关键技术进行焊接操作,可以取得良好的焊接效果。
镁的化学性质非常活泼,在熔炼和浇注过程中容易与环境中的水气等发生反应产生氢气、氧化物,导致缩松、缩孔、夹杂等铸造缺陷产生。根据Pilling Bedworth理论,Mg生成的氧化膜的体积比例系数(RPB)<1,属于疏松型,对熔体不能起到有效的保护作用。含Er镁合金在熔化的时候,由于Er与氧的亲和力更大,将生成稀土氧化物Er2O3,在熔体表面形成较致密的氧化膜,体积比例系数>1,能够有效减少熔体的氧化夹杂。通过热力学分析可知,Er与熔剂中的MgCl2具有较强的交互作用,在熔化和精炼过程中,Er会与熔体中的过剩MgCl2发生还原反应,生成ErCl3,并沉降,有效地抑制合金中的熔剂夹杂。此外,Er会与镁熔体中析出的氢气反应,生成密度较高的高熔点化合物ErH2,下沉后成固体渣,从而减少疏松和夹杂。浇注过程中,稀土氧化物Er2O3所形成的致密氧化膜可以有效地减少熔体的二次氧化夹杂。