江苏扬州设备校准,计量校准检测机构世通校准
-
¥188.00
我公司在一次现场检查中发现一机械加工企业(配变容量100kVA,力调用户),总表为三只单相1.5(6)代有功,其中的C相表读数与前次抄表时少了两个字。加上该用户平均用电量在6000kW·h左右,检查人员怀疑有窃电可能,当切除用电负荷时,发现C相电能表在反转,A相正转,现场人员立即向局里汇报,我们组织人员到现场进一步检查。
经检查发现,当切除负荷后,三只电能表其中A相正转、B相不转、C相反转。运行现场发现该用户电容柜自动补偿器损坏后,电容补偿一直为手动运行,同时发现电容器补偿三相电流指示不平衡,其中B相电流为零,当场切除电容,再看三只电能表均不走。再试仍是原来情况,后集中对B相电容补偿回路进行检查,发现B相PTO熔丝不通,说明断开,重新更换后再投运,指示电流表正常,电能表三只均停走。
情况分析:为什么电容器缺相运行会引起电能表反转?是否会影响正常计量?作如下分析:
现场故障时用电负荷为零,电容器接线方式为星形,电容器为纯容性负载(有功损耗很小忽略不计),电源相序为正相序,见图1系统接线图和向量图。
当系统正常运行时(用电负荷为零),因为各相电路中容性电流的相位分别对应的电压90°,各相电能表的功率为P=UIcos90°=0,所以三只单相电能表都不转。
当电容器B相熔丝熔断即退出运行时,A、C相电容器形成串联后接在电源Va和Vc之间,这时,电路中的电流幅值和相位都发生了变化,见图2所示。
即A相电流Ia电压Vac角度为90°,因为VaVac 30°,所以A相电流Ia电压Va角度为60°;
C相电流Ic电压Vca角度为90°,因为Vc滞后Vca 30°,所以C相电流Ic的相位电压Vc为120°;
此时A相电流与C相电流大小相等,方向相反。
因为电能表的电压回路正常,所以各相电能表运行状态下的功率分别为:
Pa=VaIacos(90°-30°)=VIcos60°=0.5VI>0,则A相电能表正转。B相电流为零,B相电表不转。
Pc=VcIccos(90°+30°)=VIcos120°=-0.5VI<0,则C相电能表反转。
结论:凡是有电容器补偿的用户,因电容器缺相运行引起的单相电能表(指代总表的三只单相表)在无用电负荷情况下的缓慢正转或反转属正常情况,且不影响正确的计量,即三只单相表记录的总电量不受影响,表面上看一只表正转,另一只表反转,其增加与减少的电量是相等的,进一步讲,对有无功电容器补偿装置的用户或变压器台区,电容器若发生缺陷运行所产生的异常对正确计量没有任何影响。
值得思考与提示的问题是,我县每台农改配变的配电箱都配有(20~40)kVAR的电容器补偿(根据变压器容量而配)。像上述的情况时有发生。在工作中遇有不少农电人员请示这类问题,要求安装电子式电能表或1.5(6)A双向计数式机械表,这都是不正确的。因为目前生产的电子式电能表,基本计度器采用步进电机驱动计度器计电量,当电流是反向时则计度器仍为正计量。机械式1.5(6)A双向计数式电能表同样是这样的道理,也就是说用这样的表作为计费表,当发生上述电容器缺相运行时,其中反转的一只表此时计数为正电量,导致多计用户电费,这种计量方式切不可用在有无功补偿装置的用户及变压器台区。
通过该异常情况分析,也充分显示我们用电检查(营销)人员的业务知识要进一步提高,同时要组织好社会电工和农村电工的培训,不断提高他们的业务技术素质和依法经营的意识,确保电力系统正常稳定的运行。
材料试验机作为机械性能测定的主要装备之一,在机械加工行业得到了广泛的应用。本文就企业中常用的液压材料试验机常见故障及排除方法逐一进行阐述。
1.试验机在加荷过程中度盘指针抖动,其可能原因有
(1)试验机与其附近的其他机器(如金属切削机床,大功率电机等)发生机械共振,引起指针抖动;
应采取的措施:消除共振源。
(2)安装地基不牢固或地脚螺钉松动(一般为地脚螺钉松动);
应采取的措施:紧固地脚螺钉。
(3)液压系统中有空气,使出油不均导致液压系统产生震动,从而引起指针抖动。这有两个可能因素:一是油泵中进了空气;二是主体油缸接管带进了空气;
应采取的措施:如果是油泵进了空气,应松开油泵排气螺钉,启动电源,使泵内空气排尽(油中无气泡),然后拧紧油泵排气螺钉。如果是主体油缸接管带进空气,应启动电源,关闭回油阀,打开进油阀,让主体油缸中含有空气的油流回油箱。如此反复数次,直至空气排尽。
(4)油液粘度低,活塞周围有较多溢油,高压回油管漏油;
应采取的措施:更换符合要求的新油。
(5)送油阀内有铁末、油渣等异物,使送油阀内顶杆不能在阀内的分流槽内自由移动,使液压系统产生震动;
应采取的措施:清洗送油阀,排出异物。
(6)送油阀内起稳压作用的弹簧刚度不适(一般太软),引起液压系统震动;
应采取的措施:更换合适的弹簧。
(7)油泵工作不正常(个别活塞不工作),使出油压力不匀产生液压系统的震动。
应采取的措施:清洗检查油泵内部零件结构,进行相应维修或更换新油泵。
2.载荷保持不住,其可能原因有
(1)液压油粘度过低;
(2)液压系统内有空气存在;
(3)液压系统漏油或回油阀关闭不严;
(4)送油阀内的稳压弹簧刚度过小;
(5)送油阀内有杂质异物。
应采取的措施:排出液压系统中的空气,排除漏油因素,如活塞四周有大量液压油溢出,则应检查溢流管导通情况,其次检查液压油粘度,视情况处理。如经处理或换油后不漏油而载荷仍保持不住,则应清洗送油阀并增加阀内稳压弹簧刚度。
3.加不上载荷,或加不到大载荷,其可能原因有
(1)油泵皮带松动,有打滑现象;
(2)油泵不能正常工作;
(3)油箱中的储油量不足;
(4)液压油粘度过低;
(5)液压系统有漏油情况发生;
(6)送油阀内稳压弹簧刚度不够;
(7)送油阀内的节流针孔有堵塞现象。
应采取的措施:检查高压油路系统是否漏油,油箱内储油量是否足够,油泵皮带是否松动,其次检查回油管的回油量是否在油压上升时变大,(正常情况下应不变或变小),然后再检查送油阀、油泵等是否正常,根据情况采取相应对策。
4.加荷途中,指针突然向回倒或抖动,其可能原因有
(1)液压系统有严重漏油(升压到一定程度产生漏油),或稳压弹簧刚度过低;
(2)节流针孔有堵塞现象。
应采取的措施:应检查液压系统,排除漏油因素,其次清洗节流针孔,检查稳压弹簧刚度是否合适,否则予以更换。
5.摆锤回位不良,其可能原因有
(1)缓冲阀问题:a.缓冲阀调节不当;b.缓冲阀节流针磨损;c.缓冲阀内的钢球与进油口接触不良,有空隙;d.缓冲阀出油孔堵塞;
(2)油的粘度过大或过小(摆锤回落速度太慢或太快);
(3)液压油太脏。
应采取的措施:检查缓冲器调节位置是否恰当,油液是否清洁,粘度是否符合要求,其次检查缓冲阀是否清洁完好,节流针是否磨损,视情况予以调整或更换。
6.摆杆不能调至垂直标志位置,其可能原因有
(1)摆锤编号与试验机不一致;
应采取的措施:检查并更换与之相一致的摆锤。
(2)测力机构倾斜;
应采取的措施:调正测力机构。
(3)摆杆弯曲变形。
应采取的措施:校直摆杆。
7.调整指针零点时其灵敏度差或在使用过程中指针零点经常发生变动,其可能原因有
(1)试验机存在不稳定的摩擦,如指针、齿杆、摆杆等处轴承存在摩擦,工作活塞擦靠,测力活塞导向轴承不灵活等非正常摩擦;
应采取的措施:进行清洗并加以调整。
(2)测力活塞不转动,如测力活塞传动机构被卡住,蜗轮、蜗杆间隙调整不当;
应采取的措施:进行清洗并加以调整,如蜗轮、蜗杆损坏应予更换。
(3)缓冲阀回油不良或存在摩擦;
应采取的措施:进行清洗或调整。
8.摆锤不能升到极限位置,其可能原因有
(1)平衡锤触碰机体;
应采取的措施:适当调整平衡锤位置。
(2)推杆位置调整不当;
应采取的措施:适当调整推杆位置。
(3)连杆上的挡板位置调整不当;
应采取的措施:将挡板适当调高,使指针转动一周稍过2-3小格才触动安全开关。
(4)摆锤主轴方铁下横隔板上的控制螺丝调整不当或异物。
应采取的措施:清除异物,适当降低控制螺丝,使挡板先触动安全开关后方铁才与控制螺丝接触。
9.摆锤已升至极限位置而指针未到达满刻度,其可能原因有
(1)指针与度盘之间有擦靠或轴承锈蚀;
(2)指针轴齿轮上的线轮绕线过短或绕线位置不当。
应采取的措施:视情况进行调整。
10.工作活塞升起后,回油时不能自由降下,其可能原因有
(1)活塞与缸体的配合部分有锈蚀、异物、机械损伤或润滑不良;
(2)活塞上升位置超过极限而倾斜。
应采取的措施:下夹头升起,使之顶住上夹头,清洗油缸活塞,除去锈蚀、异物。若检查发现活塞表面有损伤,应用沙纸和油石磨去毛刺;若是上升位置超过极限而倾斜,应再次升压使活塞上升,扶正位置后缓慢放油,使活塞慢慢降下。
11.工作活塞空载上升时,指针指示出一定的载荷,空载下降时指针向负方向走几格,其可能原因有
(1)测力部分的重量平衡未调整好;
应采取的措施:空载上升一段距离后,使试验机进入工作状态,用平衡锤把摆锤调到铅垂位置,指针对零。
(2)主体部分立柱上的滑轮摩擦太大,或工作活塞存在摩擦。
应采取的措施:调好滑轮与立柱的相对位置,其间隙应均为(0.1~0.5)mm。若工作活塞有摩擦,应将活塞升至极限位置,进行清洗或调修。
12.卸荷完毕,摆锤已回到铅锤位置,而指针仍停在中途位置,其可能原因有
(1)齿杆与齿轮啮合太紧或其间有异物;
(2)齿杆弯曲或齿杆、齿轮、齿尖受损;
(3)指针擦盘或轴承锈蚀;
(4)测力活塞尖角损伤。
应采取的措施:检查齿杆、齿轮是否灵活,齿是否受损,齿杆是否弯曲,应视情况进行清洗或调修。
13.从动指针不能停在所加负荷位置,其可能原因有
(1)从动指针太松;
(2)从动指针与主动指针重合太紧;
(3)从动指针两端的重量不平衡。
应采取的措施:检查从动指针是否完好,其次抬起摆锤,使主动指针带动从动指针转动,看其是否能停在不同位置,如果不能,则应检查指针轴或调整从动指针下面的弹簧,使之能停留在度盘的任意位置。
14.下夹头升降不灵活,其可能原因有
(1)丝杆、螺母内有异物或机械损伤;
(2)蜗轮、蜗杆松动;
(3)丝杆与机台上的通孔摩擦;
(4)电机传动皮带松动。
应采取的措施:视情况分别予以清洗或调修。
15.夹具不同心,其可能原因有
(1)异向滑轮位置调整不当;
应采取的措施:调整滑轮,使滑轮与立柱间间隙均为(0.1~0.5)mm左右。
(2)夹具本身同心度超差;
应采取的措施:进行修理,使之达到要求。
(3)主体部分安装不水平。
应采取的措施:进行水平调整。
16.电器设备故障
(1)电机发出异响,其可能原因有:a.三相电路有一相缺相;b.传动机构故障引起电机负荷加重;
(2)电机发烫,其可能原因有:a.电机绕组存在短路;b.电机超载;c.电机受潮;
(3)突然断电,其可能原因有:a.电器系统存在短路:b.电器开关接触不良;
(4)电器控制开关失灵,其可能原因有:a.开关位置调整不当:b.控制开关内部故障(接触不良或活动部件被卡);
(5)机体导电,其可能原因有:a.地线未接或接触不良:b.电器受潮;c.相线导线接头与机体接触。
应采取的措施:视情况采取相应措施予以排除。
绝缘电阻测量仪主要是用来测量变压器、电机、电缆及其它电器设备或绝缘材料的绝缘电阻。它具有携带方便,使用简单等优点,被广泛使用。下面就其常见的两种故障现象作一简单分析。
1.电压超差且不稳
端钮电压超出额定电压规定的范围并且不稳定,是绝缘电阻测量仪使用一段时间后常见的故障。
(1)如果误差较小,可以判定电路无故障,只是由于调速系统的调速轮与触头接触面上有油污,使摩擦系数发生了变化,或调速弹簧拉力变化,使磁铁组合磁能受到损失,从而使端钮电压发生了变化。此时,只需用酒精清洁一下调速轮或适当调整一下弹簧拉力,即可使端钮电压达到规定的范围。
(2)如果端钮电压低于规定值较多且摇动发电机感觉很费力,则说明发电机的输出电路有短路。
A.断开整流电路后摇动手柄,感觉仍很沉,电压值也较低,说明发电机的固定线圈定子发生了层间、匝间短路;
B.断开整流电路摇起来恢复正常,说明整流电路发生了故障。因为,整流二极管及硅堆反向电流变大或反向击穿短路,或倍压电容器、滤波电容器击穿,印刷电路板绝缘下降等,都可能引起端钮电压变低,不稳。应更换掉损坏的器件。
2.开路时不到∞,短路时不到0
此故障一般发生在测量机构。
(1)开路时不到∞,短路时0位超出。是电压线圈短路造成的。由于电压线圈短路后与补偿线圈的电气力矩失去了平衡,同时,短路的电压线圈与电流线圈的电气力矩也失去了平衡。从而造成了开路不到∞,短路0位超出的故障情况。
(2)开路时∞超出,短路时不到0。前者是补偿线圈短路造成的,后者多由于电流线圈短路引起。
(3)开路时到∞,短路时指针不动。说明电流线圈断路或电流回路断路。
(4)开路,短路时指针均不动,则说明电压回路及电流回路均有断路情况。因为电流线圈和电压线圈的材料均为特细的漆包铜线,经长期使用后,难免发生锈蚀造成断路。
以上两种故障,是绝缘电阻测量仪的常见故障,查明了原因,就可以有针对性地进行调修了。
温度参数是工业生产过程中重要的参数之一。正确选择和使用测温仪表是实现对温度参数进行正确、有效测控的首要前提。
仪表功能的选择:如果我们需要随时了解温度的变化趋势,就应该选择具有记录功能的仪表;如果温度变化对安全生产、产品质量有重大影响的话,我们一定要选择具有报警功能的仪表;或者只是用它监视温度,那么我们选用指示类测温仪就行了;在需要对温度参数进行随时调节时,设计温度测控系统来对温度进行控制。
仪表准确度的选择:一般要考虑生产工艺过程对温度仪表的要求以及温度参数对生产的重要程度;在需要对温度参数进行控制的情况下,我们还要考虑仪表的准确度与整个测控系统的匹配问题。
仪表量程的选择:量程选择既要考虑到正常的生产情况,又要考虑在故障情况下温度的变化范围。
其它注意事项:进行现场中低温测量时,宜选择双金属温度计,同时要注意其刻度盘直径和径向;有振动的地方,不宜选用工业玻璃棒式温度计;测温点较高或现场环境不好时,宜选择压力式温度计,但与温包相连的毛细管的长度不能超过20米;热电阻、热电偶的选择要考虑它们的测量范围、响应速度、分度号、使用安全等方面;对于需要对温度参数进行控制时,需要设计一个测控系统,同时要考虑敏感元件、变送器、执行器、显示仪表等之间的匹配、安全等问题。
总之,测温仪表的选型对生产管理、生产的安全性、节约计量成本、提高生产效率有着重大意义。
液相色谱仪利用试样中各组分在色谱柱中固定相和流动相间分配或吸附特性的差异,由流动相将试样带入色谱柱中进行分离,经检测器进行检测,根据组分的保留时间和响应值(峰高或峰面积)进行定性和定量分析。
液相色谱仪在使用过程中常有定量结果不准确,准确度降低情况出现,如何解决液相色谱仪在使用过程中准确度降低的问题,须从以下原因入手寻找解决的方法。
一、峰高、峰面积的积分值不准确
解决的方法是设下列参数:样品量、换算比例、内标物量、保留时间。
经适当变化后,重新进标样提高试验准确度。
二、样品预处理时样品降解或样品不纯
解决方法:用标准样比较,验证样品完整性,检查样品处理过程,换新样。
三、样品蒸发
解决方法:在适当的温度下密封保存样品。
四、样品前处理不当
解决方法:检查样品制备过程中浓度、溶剂过滤等。
五、内标物配置不当
解决方法:验证内标物配制、混合过程(称量和适当稀释),配制新内标物。
六、进样问题(只对外标法而言)
解决方法:1.如果使用全部定量环的手动进样器,在进样前需在“取样”(load)状态下清洗三次;2.如果使用部分定量环的手动进样器,进样量需少于定量环体积的50%;3.如果使用注射器的手动进样器,须确保进样操作重复;4.如果使用自动进样器可以确保正确的进样体积,须注射器不含空气,样品瓶有足够的样品,系统不泄漏;5.如果手动进样器、自动进样器都使用,应确保流路的平衡。
综上所述,液相色谱仪准确度降低由多种原因造成,操作者应综合分析、判断,并通过各种可能的尝试,从而快速排除故障,使仪器恢复正常。
614系列电子交流稳压源是在社会上拥有量比较大的电源设备,由于其运行可靠、价格适中而被广泛使用。但是,作为一切电子实验的电源设备,一旦有故障,尤其是对电子管不太熟悉的计量工作者而言,可能会束手无策。现介绍以下比较常用的614系列电子交流稳压源故障的检修方法。
1.稳压器发生故障时,根据起始电压判断故障范围
所谓起始电压是指稳压器刚通电,电子管还处于预热阶段时的电压指示值。正常稳压器的起始电压约为交流(170~180)V(输入电压为220V左右),一两分钟后电子管开始工作,电压上升,此时旋动“电压调节”装置,输出电压在交流(180~280)V之间可调。
若起始电压为交流电压280V以上,则多为C1击穿。因为L、C1回路并联于磁放大器T2的交流侧,扼流圈的电感量小于T2的电感量,相当于T2交流侧短路,此时输出电压是自耦变压器T1将输入电压进行升压的结果。
起始电压为230V左右,且预热后可以升高,但不能调低,则要检查输入电压是否已超出稳压范围,否则是L、C1回路断路。若断路,输出电压波形有明显的三次谐波。
若起始电压正常,输出电压仅在(240~280)V之间可调,说明有个别的6P3P碰极,使Id的小值不为零,而是一个较大的电流值。
起始电压正常,预热后输出电压280V以上,且不可调,故障在控制部分。
起始电压正常,预热后输出电压仍不可调高,则要分别检查调节和控制部分。
2.电压失调故障的原因与检修
电压失调是614系列稳压器的常见故障,可分为高失调和低失调两种。
(1)低失调
Id为零,说明功率放大级没有工作。由于是多只电子管并联工作,因此同时坏的可能性很小,一般多为整流桥(D14~D17及有关元件)损坏或直流线圈断线造成功率放大级无高压;另外还有可能是6N1阴极电阻R12断路,造成6P3P阴极电位常高,使6P3P截止。此时稳压器空载尚能工作,但是带上负载就会低失调,此为功放级还存在漏电流所致。第三种情况是R12良好而6P3P阴极电位常高,是因为6P3P栅极电位常高所致,系6J1断极,断丝不工作之故。第四种,R2断,使6J1控制栅极电位常低,6J1截止。
调节部分故障引起低失调的原因是T1初级断线或T2交流线圈断路。
(2)高失调
Id总为大值。因为功放级电子管同时碰极的可能性很小,多为前级控制电压未送到6P3P的阴极,造成其阴极电位常低。原因有:①前级各管无屏压,D1~D4损坏或R1断或C3击穿造成无直流输出;②6N1断极,断丝不工作;③6J1碰极造成6N1栅极电位常低;使6N1截止;④2D2P断丝或R4,W1断使2D2P屏极电位常高,从而使6J1常通,6N1栅极电位常低。
(3)基本检查方法
614系列稳压器的控制部分是一直流放大器,前后级电位相互影响,且各级电位随输入电压的不同而不同。检修时抓住各点电位是否可调来发现故障点。同时,针对直流放大器的前后级电位相互影响的特点,测量时,可拔去后级电子管,从而避免判断错误。具体测量时,注意零电位的选取,并参考以下几点电压值:
①测6N1阴极电位,应在(180~300)V间变化;
②测6J1屏压,应在(130~300)V间变化;
③测2D2P屏压,应在(0~170)V间变化。
若某点电位不可调,则说明本级存在故障或前级存在故障。以上电压仅供参考。
3.自激的产生与检查
当稳压器输出电压摆动或指示器一明一暗,电压表指针摆动,节律在(1~5)次/秒时,则说明控制部分出现了自激。原因为滤波、退耦或负反馈电路出现故障。如C3失效或容量减小;6J1放大倍数偏高,负反馈网络断开时也会自激,但R5、C2不易损坏,故不能随意更改其值,以免影响反应时间。如抖动幅度较小,换C3无效,可换6J1管再试。
当稳压器输出电压出现节律很慢的大幅度摆动,则R28断路,使直流线圈反峰电压失去放电回路造成。需注意的是,当614稳压器负载为电容性时(如恒压器、稳压器等),也会出现大幅度摆动,此属正常现象。
平时稳压器工作中输出电压无规律地随市电轻微波动的情况属正常现象,若波动严重,应检查是否反应时间迟滞。
4.其他故障
稳压器接通电源,指示灯不亮,整机不工作。可检查接线、开关是否松脱。
稳压器开机后控制部分无电压,经常是D1~D4击穿或保险F2烧断;D14~D17击穿或F1烧断,可逐一检查更换。
稳压器输出电压低于交流250V时,保护装置动作,或输出电压(250~260)V时,过压保护装置不动作,说明过压装置出现故障,应检查晶体管直流放大器电路,如检查D5~D8、D9~D12有无击穿和损坏,再查BG1~BG3有无损坏,继电器线圈是否开路。
当保护装置动作失常时,还应检查继电器的触点有无接触不良。