江西硅晶碇切片胶蓝宝石,碳化硅切片胶
-
面议
TSV 互连具有缩短路径和更薄的封装尺⼨等优点,被认为是三维集成的核
术。 TSV 结构如下图所示,在硅板上面有加⼯完成的通孔;在通孔内由内到外
依次为电镀铜柱、绝缘层和阻挡层。绝缘层的作用是将硅板和填充的导电 材料
之间进⾏隔离绝缘,材料通常选用⼆氧化硅。由于铜原⼦在 TSV 制 造⼯艺流
程中可能会穿透⼆氧化硅绝缘层,导致封装器件产品性能的下降 甚⾄失效,⼀
般用化学稳定性较⾼的⾦属材料在电镀铜和绝缘层之间加⼯ 阻挡层。后是用
于信号导通的电镀铜。
在不同电流密度下的分阶段电沉积实验展示了动态的硅通孔
(TSV) 填充过程。通过控制外加电流密度,可以获得对应于
TSV填充结果的不同形貌。具体来说,低电流密度 (4 mA/
cm 2 ) 会导致接缝缺陷填充,中等电流密度 (7 mA/cm 2 ) 会导
致⽆缺陷填充,⽽⾼电流密度 (10 mA/cm 2 )) 导致空洞缺陷填
充。填充系数分析表明,电流密度对TSV填充模型的影响是
由添加剂和铜离⼦的消耗和扩散的耦合效应触发的。此外,
镀层的形态演变表明局部沉积速率受镀层⼏何特征的影响。
硅通孔 (TSV) 是⼀种很有前途的三维 (3D) 封装技术,具有
⾼性能、减小封装体积、低功耗和多功能等优点。在 TSV ⼯
艺中,通常使用铜电化学沉积 (ECD) 进⾏的通孔填充步骤占
总成本的近 40% 。作为 TSV 的核⼼和关键技术,以小化⼯
艺时间和成本的⽆缺陷填充备受关注。
目
电沉积程序
预处理后,在不同的电流密度(4 mA/cm 2、5 mA/cm 2、7
mA/cm 2、10 mA/cm 2和15 mA/cm 2 )下进⾏电化学沉积
(ECD)⼯艺) 在的时间段内。低电流密度条件(4 mA/cm 2)
和中等电流密度条件(7 mA/cm 2 )的电沉积间隔分别为30
min和10 min。