临沂分子筛回收
-
面议
对于沸石分子筛的形成及其生长机理的深入研究有助于人们更好的设计合成新型沸石分子筛拓扑结构、扩展沸石分子筛材料合成新路线、开发沸石分子筛材料的新性质及新用途。尽管沸石分子筛的发展已经有许多年了,但是对于它的合成机理方面一直未有一个真正的定论。研究分子筛的晶化机理即具有十分重要的理论意义,也对合成新型的沸石分子筛合成具有实际的指导意义。目前具有代表性的为固相转变机理(Solid hydrogel Transformation mechanism)、液相转变机理(Solution-mediated Transport mechanism)和双相转变机理这三种机理。
,沸石分子筛所需的原料混合后,主要物种硅酸盐与铝酸盐聚合生成硅铝酸盐初始凝胶。这种硅铝酸盐凝胶是在高浓度条件下快速形成的,因此具有很高无序度,但是这种硅铝酸盐凝胶中可能含有某些初级结构单元,如:四元环、六元环等等。同时,这种凝胶和液相之间建立了溶解平衡。另外,硅铝酸根离子的溶度积与凝胶的结构和温度息息相关,随着晶化温度的变化,这种凝胶和液相之间建立起新的凝胶和溶液的平衡。其次,液相中多硅酸根与铝酸根浓度的增加导致晶核的形成,然后是沸石分子筛晶体的生长。在沸石分子筛的成核和晶体生长过程中,消耗了液相中的多硅酸根与铝酸根离子,从而引起硅铝凝胶的继续溶解。由于沸石晶体的溶解度小于无定形凝胶的溶解度,后结果是凝胶的完全溶解,沸石分子筛晶体的完全生长。
Zhdanov的实验表明,沸石分子筛晶体生长速度与液相中多硅酸根和铝酸根离子的浓度息息相关,并且晶化过程中液相各组分浓度是不断变化的,这些实验结果支持了液相转变机理。对液相转变机理有利的证明是从液相中直接晶化沸石分子筛,Koizumi等人直接从澄清溶液中合成出了SOD,GIS、FAU等沸石分子筛。
双相转变机理
在人们对于沸石分子筛晶化究竟是通过液相转变机理还是通过固相转变机理争执不清时,八十年代之后,又有科学家提出了双相转变的机理。双向转变机理认为液相转变和固相转变同时存在沸石分子筛晶化过程中,既可以分别发生在两种晶化反应体系中,也可以同时发生在一个体系中。
Gabelica等人从对ZSM-5分子筛以及Na Y沸石晶化的研究印证了双相转变机理的存在性。Iton等人在ZSM-5分子筛的晶化过程中应用小角中子散射技术进行研究,同时发现使用不同的硅源,ZSM-5沸石分子筛的晶化是遵循不同的机理进行。从而得出即使是同一种类型沸石分子筛,在不同的晶化条件下其生长的机理是不一样的结论。
沸石合成大都是在碱性条件下合成的,常见的碱是无机碱氢氧化钠。我们通常用Na2O/SiO2来表示体系的碱度。一般而言,碱度增加,硅铝原料的溶解度增加,硅铝酸盐聚合度降低,使溶液中的过饱和度增大,从而加快成核速度,结果缩短了诱导期,使之晶化速度加快。此外,增大碱度时会使终产品的粒子变小并且粒径分布变窄,如在无模板条件下合成具有6nm小尺寸的EMT沸石分子筛。另外当体系的碱度增大,有利于生成富铝的沸石。在无有机模板存在的条件下,通过让无机碱充当模板的作用来合成如Beta,RUB-13, ZSM-12,ZSM-23,MCM-68等沸石分子筛,这些沸石分子筛不仅是高度富铝的而且还是高度富有无机金属阳离子的。另一个沸石合成的条件是在含有氟离子的中性或酸性条件下来合成沸石分子筛,氟离子在分子筛合成中取代了碱的作用,来溶解硅铝酸盐凝胶。在氟体系下合成的纯硅分子筛缺陷较少,也更容易得到比较的大单晶。
对于合成沸石分子筛,温度是一个很重要的因素。温度变化会影响水在反应釜中的压力的变化、硅铝酸盐的聚合状态和聚合反应、凝胶的生成和溶解与转变、分子筛的成核与生长以及介稳相间的转晶。相同的体系在不同的温度下可能会得到完全不一样的物相,温度越高得到的沸石的尺寸和孔体积越小,晶体骨架密度相应增大。一般而言在150 °C以下,初级结构往往是四元环或六元环,而当温度150 °C,则往往是五元环的初级结构单元。由此可见,在高温水热条件下,无机物(主要是硅铝酸盐物种)的造孔规律和晶化温度与水蒸汽压之间存在着密切的联系。
晶化时间往往也是分子筛合成的一个重要因素。晶化时间不够常常会有大量的原料未转化,时间过长,往往会发生晶体转晶的现象,一般由比较空旷的结构转化为比较致密的结构。晶化时间与晶化温度往往是相辅相成的,降低温度,就要增加晶化时间;升高温度,有时就要缩短晶化时间。