路北区生产新型超塑性镁合金供应新型超塑性镁合金
-
¥120.00
镁合金作为轻的金属结构材料,在航空航天、武器装备、汽车、3C电子等领域具有的应用潜力。低的室温塑性一直是限制镁合金广泛应用的主要阻碍之一。HCP结构提供了有限数量的可激活的滑移系统,并且只有两个立的基面滑移系统易于激活,远不能满足Von Mises/Taylor准则。获得超细晶 (约1 μm及以下) 是提高镁及其合金室温塑性的重要手段,然而获得超细晶往往需要特殊的设备和工艺,限制了广泛推广应用。
根据密度泛函理论(DFT),大部分非稀土元素,如Al、Zn或Ag,有助于提升Ⅰ型锥面和Ⅱ型锥面间交滑移激活能垒,阻碍交滑移开启,通常会对塑性产生不利影响。然而,Mg-3Al-1Zn(AZ31)合金的塑性通常纯镁,归因于纯镁存在明显的剪切带和大量二次孪晶,导致塑性变形不稳定,易产生应力集中。近期,Ahmad等人使用DFT理论预测了含有大量新型合金元素(如K、Sr和Li)的三元和四元非稀土Li-Al、Li-Zn基合金的塑性变形能力。通过引入塑性因子χ,对交滑移阻力加以表达,量化合金元素提升塑性的效果。当塑性因子χ= 1时,交滑移速率PB转变速率10倍,足以显著提升塑性;当塑性因子χ< 0时,将对塑性产生不利影响。此研究可进一步预测含有Sr、Mn、K、Sn、Ca和Zr元素的多元镁合金的塑性变形行为。通过对比Mg-Al-Zn-Ca-Mn、Mg-Zn-Sr及Mg-Mn-Sr合金实验结果,证实了理论的准确性。
通常,合金化可起到强化基面滑移、激活非基面滑移、加速交滑移、弱化基面织构及细化晶粒等作用,从而减少基面与非基面滑移间CRSS 差值,提升镁合金塑性。然而,对于大多数镁合金而言,仍难以实现强度和塑性的同步提升。为了获得高强塑性镁合金,一方面可通过巧妙的合金成分设计结合加工工艺,充分发挥溶质原子合金化作用。例如,提升凝固冷却速度或采用压力成形促进过饱和固溶体形成,过饱和溶质原子不仅可产生额外的固溶强化作用以提高强度,还可以强化软变形模式(基面滑移或孪生)、促进非基面滑移开启以提高塑性。此外,采用新型加工工艺,通过巧妙设计并调控镁合金微观组织,亦可实现强塑性同时提升。近期研究发现引入异构/混晶、梯度/层状异质结构、形成高密度纳米析出相/团簇和纳米孪晶是实现金属结构材料(包含镁及其合金)强塑性同步提升行之有效的策略。总之,充分发挥元素合金化作用并引入异构组织,有望为发展高强塑镁合金及其应用开辟新道路。
粗晶纯镁[1]和镁合金的高温蠕变行为在早期的报道中有详细的描述。结果表明,平均晶粒尺寸为~80 μm的纯镁的蠕变速率控制机制是位错在高温和高应力下沿位错交叉滑移爬升至~600 ~ 750 K,在高温和低应力下向Nabarro-Herring扩散蠕变过渡。
AZ31合金的实验数据与位错爬升蠕变方程吻合良好,并提出了AZ31在673 K时考虑扩散、位错蠕变机制和晶界滑动的蠕变变形机理。然而,由于缺乏关于AZ31合金晶界滑动作用的实验信息,因此无法详细确定蠕变速率方程中的所有参数。
剧烈塑性变形技术[5]的发展以及这些技术在镁合金加工中的应用为研究这些具有细晶甚至超细晶组织的合金高温行为提供了机会。
一、镁合金材料优点
1、重量轻
镁合金作为一种轻质金属结构材料,其密度为铝的2/3、钢的1/4;在同等刚性条件下, 1Kg镁合金的坚固度等于18Kg铝和2.1Kg钢,这一特性对于现代手提类产品的重量减轻及车辆能耗减少有重要意义。
2、吸震性能高
镁有的滞弹吸震性能,可吸收震动与噪音。在相同载荷下,其减振性是铝的100倍、钛合金的300~500倍,抗冲击性是塑料的20倍。用于设备机壳可减少噪音传递、提高防冲击与防凹陷能力。
3、切削性能良好
镁有良好的切削性能,能接受较高的切削速度,可减少切削加工时间,延长刀具使用寿命;有优良的表面光洁度,并可一次切削获得,极少出现积屑瘤;有良好的断屑特性及温度传导性,可免于使用冷却液或润滑液。
4、再生性
废旧镁合金铸件可再熔化作为AZ91D、AM50或AM60的二次材料进行铸造。由于压铸件的需求不断增长,可回收的能力是非常重要的,也更符合环保要求。