商品详情大图

闸北出售碳化硅肖特基二极管供应商

及时发货 交易保障 卖家承担邮费

商品详情

功率二极管是功率半导体器件的重要组成部分,主要包括 PiN 二极管,肖特基势垒二极管和结势垒控制肖特基二极管。本章主要介绍了肖特基势垒的形成及其主要电流输运机理。并详细介绍了肖特基二极管和结势垒控制肖特基二极管的电学特性及其工作原理,为后两章对 4H-SiC JBS 器件电学特性的仿真研究奠定了理论基础。

金属与 N 型 4H-SiC 半导体体内含有大量的导电载流子。金属与 4H-SiC 半导体材料的接触仅有原子大小的数量级间距时,4H-SiC 半导体的费米能级大于金属的费米能级。此时 N 型 4H-SiC 半导体内部的电子浓度大于金属内部的电子浓度,两者接触后,导电载流子会从 N 型 4H-SiC 半导体迁移到金属内部,从而使 4H-SiC 带正电荷,而金属带负电荷。电子从 4H-SiC 向金属迁移,在金属与 4H-SiC 半导体的界面处形成空间电荷区和自建电场,并且耗尽区只落在 N 型 4H-SiC 半导体一侧,在此范围内的电阻较大,一般称作“阻挡层”。自建电场方向由 N 型 4H-SiC 内部指向金属,因为热电子发射引起的自建场增大,导致载流子的扩散运动与反向的漂移运动达到一个静态平衡,在金属与4H-SiC 交界面处形成一个表面势垒,称作肖特基势垒。4H-SiC 肖特基二极管就是依据这种原理制成的。

金属与半导体接触时,载流子流经肖特基势垒形成的电流主要有四种输运途径。这四种输运方式为:

1、N 型 4H-SiC 半导体导带中的载流子电子越过势垒顶部热发射到金属;

2、N 型 4H-SiC 半导体导带中的载流子电子以量子力学隧穿效应进入金属;

3、空间电荷区中空穴和电子的复合;

4、4H-SiC 半导体与金属由于空穴注入效应导致的的中性区复合。

肖特基二极管的反向阻断特性较差,是受肖特基势垒变低的影响。为了获得高击穿电压,漂移区的掺杂浓度很低,因此势垒形成并不求助于减小 PN 结之间的间距。调整肖特基间距获得与 PiN 击穿电压接近的 JBS,但是 JBS 的高温漏电流大于 PiN,这是来源于肖特基区。JBS 反向偏置时,PN 结形成的耗尽区将会向沟道区扩散和交叠,从而在沟道区形成一个势垒,使耗尽层随着反向偏压的增加向衬底扩展。这个耗尽层将肖特基界面屏蔽于高场之外,避免了肖特基势垒降低效应,使反向漏电流密度大幅度减小。此时 JBS 类似于 PiN 管。反向漏电流的组成主要由两部分:一是来自肖特基势垒的注入;二是耗尽层产生电流和扩散电流。

产生二次击穿的原因主要是半导体材料的晶格缺陷和管内结面不均匀等引起的。二次击穿的产生过程是:半导体结面上一些薄弱点电流密度的增加,导致这些薄弱点上的温度增加引起这些薄弱点上的电流密度越来越大,温度也越来越高,如此恶性循环引起过热点半导体材料的晶体熔化。此时在两电极之间形成较低阻的电流通道,电流密度骤增,导致肖特基二极管还未达到击穿电压值就已经损坏。因此二次击穿是不可逆的,是破坏性的。流经二极管的平均电流并未达到二次击穿的击穿电压值,但是功率二极管还是会产生二次击穿。

碳化硅作为一种宽禁带半导体材料,比传统的硅基器件具有更的性能。碳化硅的宽禁带(3.26eV)、高临界场(3×106V/cm)和高导热系数(49W/mK)使功率半导体器件效率更高,运行速度更快,能够有效降低产品成本、体积及重量。

用碳化硅肖特基二极管替换快速PN 结的快速恢复二极管(FRD),能够明显减少恢复损耗,有利于开关电源的高频化,减小电感、变压器等被动元件的体积,使开关电源小型化,并降低产品噪音。

碳化硅肖特基二极管的开启导通电压比硅快速恢复二极管较低,如果要降低VF值,需要减薄肖特基势垒的高度,但这会使器件反向偏压时的漏电流增大。碳化硅肖特基二极管的温度特性与硅快速恢复二极管不同,当温度升高时导通阻抗会增加,VF值也上升,这样器件发热不易发生热失控,更适合并联使用。

碳化硅的能带间隔为硅的2.8倍(宽禁带),达到3.09电子伏特。其绝缘击穿场强为硅的5.3倍,高达3.2MV/cm,其导热率是硅的3.3倍,为49w/cm·k。它与硅半导体材料一样,可以制成结型器件、场效应器件、和金属与半导体接触的肖特基二极管。

下一条:闸北供应LOWVF肖特基二极管价格
广东佳讯电子有限责任公司为你提供的“闸北出售碳化硅肖特基二极管供应商”详细介绍
广东佳讯电子有限责任公司
主营:高压触发二极管,合金软桥,Low 肖特基二极管,可控硅
联系卖家 进入商铺

碳化硅肖特基二极管信息

最新信息推荐

进店 拨打电话 微信