锂电电动车电池回收一站式回收各类废旧电池宁德时代电池回收
-
面议
如果随意丢弃废弃的电池会破坏我们的水源,侵蚀我们赖以生存的庄稼和土地,我们的生存环境将面临着的威胁,所以我们有必要将使用后的废旧蓄电池进行回收再利用,一来可以防止污染环境,二来可以对其中有用的成分进行再利用,节约资源。
15 蓄电池性能特点: 1、开路电压高:电池单体电压一般可达3.6V,是普通镍氢电池或者镍镉电池的3倍; 2、能量密度高:以UR18650型电池为例,其质量比能量和体积比能量分别可达125Wh/kg和300Wh/cm3; 3、输出功率高,适合大电流充放电; 4、循环性能好,无记忆效应; 5、自放电小:在室温下,自放电率小于12%,低于镍镉电池(约25%/月)和镍氢电池(约15%/月)。由于在充放电过程在碳负表面一层固体电解质相膜(solidelectrolyteinterface,SEI),这层膜能够允许离子通过而不允许电子通过,可以较好的防止了自放电过程; 6、充放电:循环之后的库伦效率可达; 7、工作温度范围宽:-25~+45oC,如果正材料以及电解液的热稳定性能够得到改进,其工作温区将扩宽至-40~+70oC; 8、环境友好的化学能源:锂离子电池不含有污染元素,它是一种环境非常友好的化学储能装置; 9、循环寿命长:如果采用80%放电深度,循环寿命达1200次以上;如果采用较浅的放电深度,循环次数可达5000次以上; 10、较好的加工灵活性,可制作成各种形状的电池,如柱状、软包装等。因此,与传统的二次电池相比,锂离子二次电池具有非常的优点。
废旧锂电池回收再利用的好处:环境友好,污染物零排放,主要是噪音污染、粉尘污染,以及有机废气污染可以得到很好的控制,基本达到零排放标准。
废旧锂电池回收再利用的好处: 回收工艺安全可靠、投资成本低、外观整洁大方、占地面积小,设备维护成本低。
8 动力锂电池回收利用的技术仍待突破。目前,企业为平衡耗能和水污染的问题,主要采取“干、湿结合”的方法对锂电池进行拆解并回收钴、镍等贵金属。而回收碳酸锂尽管可以应对未来锂资源短缺,但当前国内外关于回收碳酸锂的研究还没有取得实质性突破,从锂电池中回收碳酸锂的成本仍是企业直接生产成本的5倍以上。
9 锂电池和废铅蓄电池不同,锂电池结构复杂,规格不一,回收再利用难度比较大。废锂电池回收工艺复杂,不同厂家的锂电池材料、配方都不相同。此外,从废锂电池中直接回收正负极材料等价值较高的材料难度大,很难产生直接的商业价值。
锂电池外壳有毒吗: 锂离子电池能量密度大,平均输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-20℃~60℃。循环性能、可快速充放电、充电达,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。
且其电解液为有机溶剂和锂盐,大多为或低毒;但锂电池分解或水解产物为氢氟酸和其它含氟化合物,具有一定腐蚀性和毒性。由此可以看出,锂电池外壳是没毒的,有毒的是电池,但是并不是所有电池都是有毒的,锂离子电池就是就是相对环保绿色的一种电池。
27 圆柱和方形电池主要采用金属材料作为外壳,而软包锂电池采用铝塑膜作为封装外壳。在国内政策高度倾向于能量密度和续航里程的前提下,软包锂电池的高能量密度、低重量是其大的优势,足以使得厂商和供应商倾向选择铝壳作为锂电池外壳。
28 锂电池性能特点: 1、开路电压高:电池单体电压一般可达3.6V,是普通镍氢电池或者镍镉电池的3倍; 2、能量密度高:以UR18650型电池为例,其质量比能量和体积比能量分别可达125Wh/kg和300Wh/cm3; 3、输出功率高,适合大电流充放电; 4、循环性能好,无记忆效应; 5、自放电小:在室温下,自放电率小于12%,低于镍镉电池(约25%/月)和镍氢电池(约15%/月)。由于在充放电过程在碳负极表面一层固体电解质相膜(solidelectrolyteinterface,SEI),这层膜能够允许离子通过而不允许电子通过,可以较好的防止了自放电过程; 6、充放电:循环之后的库伦效率可达; 7、工作温度范围宽:-25~+45oC,如果正极材料以及电解液的热稳定性能够得到改进,其工作温区将扩宽至-40~+70oC; 8、环境友好的化学能源:锂离子电池不含有污染元素,它是一种环境非常友好的化学储能装置; 9、循环寿命长:如果采用80%放电深度,循环寿命达1200次以上;如果采用较浅的放电深度,循环次数可达5000次以上; 10、较好的加工灵活性,可制作成各种形状的电池,如柱状、软包装等。因此,与传统的二次电池相比,锂离子二次电池具有非常的优点。
29 目前,对于低功率装置,锂离子二次电池已经获得了成功商业化。随着科学技术的高速发展,同时考虑到环保问题,作为绿色能源汽车应用领域的锂离子二次电池产能也将会逐步释放.
近年来,锂离子电池大规模地应用于便携式电子产品,电动汽车,储能系统以及可再生能源发电配套设施中。随之而来的问题是,废旧锂离子电池的数量越来越多。据统计,在2020年前后,动力电池的报废量将达到50万吨。此外,目前我国手机的总产量已超过20亿只,以一部手机配一块锂离子电池计,电池的平均寿命为3年,那么3年后,我们身边的废旧锂离子电池数量就可能达到数以百亿块。这还不包括笔记本电脑、照相机、充电宝等常用设备中所使用的锂离子电池。因此,废旧锂离子电池的回收已成为全球面临的问题,否则将产生诸多与资源浪费和环境污染相关的风险。由于新能源汽车行业的准入门槛相对较低,进入新能源汽车行业的企业也是逐渐增多。根据不完全统计,2017年新能源汽车领域的达到了300多家,随之产生的是各种不同的发展思路与标准,此前曾出现过充电接口标准不统一的问题。在动力电池回收领域,也出现了不同类型的电池组不利于拆解回收的局面。
62 对于已经不能满足当前应用需求的锂电池包,回收可以有效发挥其“剩余价值”。对于循环寿命显著下降的锂电池,可提取其中的金属氧化物、有机电解液、塑料外壳等再生资源。资源化回收可以有效收回锂电池成本,具有较强的经济性。
63 电芯在动力锂电池包成本中占比达到36%,若扣除毛利则电芯占比高达49%;在消费类电池中电芯成本占比更高。而在电芯中,富含镍钴锰等金属元素的正极材料的成本占到了45%。通过原料回收,镍钴锰等金属元素可实现95%以上的回收率,而锂元素的回收率也在70%以上,经济效益显著。
64 作为电子产品中的典型代表者—移动智能手机,其中含有大量的有价金属元素,包含众多轻金属,重金属,以及稀土元素,它们在手机中的含量比在自然界中的含量高得多,如果能够妥善的对其进行回收利用,不仅可以节约有限的金属资源(手机锂离子电池中的钴 Coablt),而且可以减小对环境的污染。
65 锂离子电池中除了金属元素会对环境造成破坏,电池中的有机电解液、锂盐和电池隔膜等也都会对自然环境和人类身体健康会造成严重的破坏。