商品详情大图

黑龙江福克斯波罗模块厂家FCM10E模块

及时发货 交易保障 卖家承担邮费

商品详情

FBMSVH 控制器需要调整,但当它们投放市场时,并没有关于如何进行调整的明确说明。直到 1942 年,调音都是通过反复试验完成的,当时泰勒仪器公司的 JG Ziegler 和 NB Nichols 发表了两种调音方法。

这些调整规则适用于相对于死区时间具有非常长时间常数的过程,以及包含积分过程的电平控制回路。它们在包含自调节过程(例如流量、温度、压力、速度和成分)的控制回路中效果不佳。

自调节过程总是稳定在某个平衡点,这取决于过程设计和控制器输出;如果控制器输出设置为不同的值,过程将响应并稳定在新的平衡点。

大多数控制回路都包含自我调节过程,并且已经为它们开发了调整方法。例如,Cohen-Coon 调整规则适用于几乎所有具有自调节过程的控制回路。这些规则初旨在提供非常快速的响应,但这导致了具有高振荡响应的循环。通过对规则稍作修改,控制回路仍然可以快速响应,但更不容易出现振荡。今天有超过 100 种控制器调整方法,每种方法都旨在实现特定目标。

FBMSVH控制器的输出由比例、积分和微分控制动作的总和组成。PID控制算法有不同的设计,包括非交互算法和并行算法。两者都显示在图 3 中。

在 PID 控制器中,微分模式提供比 P 或 PI 控制更快的控制动作。这减少了干扰的影响并缩短了液位返回其设所需的时间。

FOXBORO P0926MX
比例+积分控制器
通常称为 PI 控制器,比例 + 积分控制器的输出由比例和积分控制动作的总和组成。
干扰后,积分模式继续增加控制器的输出,直到它消除了所有偏移并将加热器出口温度带回其设。
微分控制方式
微分控制很少用于控制过程,尽管它经常用于运动控制。它对测量噪声非常敏感,使试错调整变得更加困难,而且过程控制也不是需要的。但是,使用控制器的微分模式可以使某些类型的控制回路(例如温度控制)比单使用 PI 控制响应更快。
微分控制模式根据误差的变化率产生输出。如果错误以更快的速度变化,它会产生更多的控制动作;如果误差没有变化,则微分作用为零。此模式具有称为微分时间 (Td) 的可调设置。微分时间设置越大,产生的微分作用越多。但如果微分时间设置过长,则会出现振荡,控制环路不稳定。Td 设置为零有效地关闭微分模式。两个测量单位用于控制器的微分设置:分钟和秒。

指令列表 是一种低级的、基于文本的语言,它使用助记指令或它们类似于汇编语言编程。每条指令都在一个新行开始,包含一个运算符,例如跳转 (JMP)、调用功能块 (CAL)、返回 (RET) 和数学运算符,例如 ADD、SUB、MUL 和 DIV 等。它是一种低开销语言,它与其他 PLC 编程方法相比,执行速度更快。

此方法容易出现运行时错误,并可能导致无限循环或非法算术运算。这种方法对程序员 友好,但对于维护工程师或电工在机器停机期间快速分析代码和排除故障没有任何好处,除非他们接受过使用这种语言的正式培训。

FOXBORO FBM201E P0924TR
顺序功能图 是描述控制系统顺序行为的图形表示。它主要用于定义时间或事件驱动的控制序列。它互连步骤、动作和转换。它允许过程的描述成为实际的程序。基本工作原理是;如果 SFC 上面的所有步骤都处于活动状态并且互连转移的所有条件都为真,则 SFC 将从第 1 步转移到第 2 步。

该程序可能会变得非常冗长。如果需要进行任何修改或在逻辑的不同部分复制或重用相同代码,则需要进行大量工作来分析和修改更改。如果维护工程师不知道如何使用 SFC,他们分析和维护设备也会变得非常棘手

FOXBORO FBM204 P0914SY
梯形图逻辑 是用于 PLC 的主要编程方法。它模仿继电器逻辑(开关、继电器、线圈和触点的组合)。使用梯形图逻辑作为主要编程方法的决定非常具有战略意义,因为它不需要太多时间来重新培训工程师来适应这一点。代 PLC 使用基于继电器逻辑接线图的技术进行编程。这消除了教电工、维护技术人员和工程师如何编程的需要。时至今日,梯形图逻辑仍然是流行的 PLC 编程方法。

下面是一个非常简单的电机控制继电器逻辑及其对应的梯形图逻辑。继电器逻辑具有启动开关、停止开关、控制继电器和继电器线圈 (CR1) 以及电机 (Mtr)。梯形图逻辑与继电器逻辑具有相似的外观和感觉。但是继电器逻辑的物理开关和线圈被 PLC 的内存位置取代,表示为输入 (I) 和输出 (O)。

PLC 系统处理许多数字,这些数字代表与过程有关的不同类型的信息。这些过程或机器参数可以是输入或输出设备、计时器、计数器或其他数据值的状态。这些存储器类型可用于存储各种信息,并可在各种继电器梯形图逻辑指令中使用。这些通常称为“标签”。标签可以是不同的数据类型。布尔(离散)、整数、浮点数、字符串和时间。

FOXBORO控制器模块
与集成周期交织在一起的是异花授粉的平行趋势:来自工业控制市场之外的技术创新正在进入控制器。继续总线 I/O 的历史,我们可以看到这种趋势如何导致新控制器选项的开发。

串行总线 I/O 导致并行 I/O 总线和其他解决方案,使小型和微型计算机与 I/O 交互。然而,这也激发了立 I/O 通信处理器的想法,它将 I/O 与计算机分离,允许任何具有通信端口的东西与其交互。

随着 I/O 模块和 I/O 处理器的改进,这些早期的混合控制器能够提供模拟信号处理选项,这在当时仅存在于分布式控制系统 (DCS) 中。由于梯形图逻辑——被 PLC 用作编程语言——并不是为处理模拟数据格式而设计的,这导致了混合控制器的新编程语言。

然后低成本的 IBM-PC 替代品开始涌入市场。由于当时 PC 仍然是混合动力系统的主要控制选项,这引起了人们对可靠性的担忧。供应商开发工业强化替代方案是有意义的,它将早期混合解决方案的 I/O、网络和编程组件具体化为一个系统,后来被称为 PAC。由于 PAC 使用与 PC 相同的处理器,因此它们能够提供一个功能集,填补了低成本、基于 PLC 的离散控制和高成本、基于 DCS 的过程自动化之间的空白。

值得注意的是,高科技业务和消费 PC 市场的创新如何为工业控制的发展带来机遇。随着运营技术 (OT) 领域越来越多地与信息技术领域融合,这种趋势正在加速。例如,它出现在近年来进入市场的移动解决方案浪潮中。它还体现在对大数据、云分析和机器学习 (ML) 支持的推动中,这些技术起源于工业自动化之外。

下一条:东莞DSQC604伺服系统配件厂家DSQC639卡件
深圳长欣自动化设备有限公司为你提供的“黑龙江福克斯波罗模块厂家FCM10E模块”详细介绍
深圳长欣自动化设备有限公司
主营:卡件模块,驱动器
联系卖家 进入商铺

黑龙江福克斯波罗模块信息

最新信息推荐

进店 拨打电话 微信