厦门铁路设备及配件YMC系列液压马达,液压元件
-
面议
在液压系统图分析排除故障时,主要方法是“抓两头”——即抓动力源(液压泵)和执行元件(液压油缸、液压马达),然后是“连中间”,即从动力源到执行元件之间经过的管路和控制元件。“抓两头”时,要分析故障是否就出在液压泵、液压油缸和液压马达本身。“连中间”时除了要注意分析故障是否出在所连线路上液压元件外,还要特别注意弄清楚系统从一个工作状态转移到另一个工作状态时是采用哪种控制方式,控制信号是否有误,要针对实物,逐一检查,要注意各个主油路之间及主油路与控制油路之间有无接错而产生相互干涉现象,如有相互干涉现象,要分析是何等使用调节错误等。
铁谱技术是以机械摩擦副的磨损为基本出发点,借助于铁谱仪把液压油中的磨损颗粒和其他污染颗粒分离出来,并制成铁谱片,然后置于铁谱显微镜或扫描电子显微镜下进行观察,或按尺寸大小依次沉积在玻璃管内,应用光学方法进行定量检测。通过以上分析,可以准确地获得系统内有关磨损方面的重要信息。据此进一步研究磨损现象,监测磨损状态,诊断故障前兆,后作出系统失效预报。
电动机噪声主要是指机械噪声、通风噪声和电磁噪声。机械噪声包括转子不平衡引起的低频噪声,轴承有缺陷和安装不合适而引起的高频噪声以及电动机支架与电动机之间共振所引起的噪声。控制的方法是,轴承与电动机壳体和电动机轴配合要适当,过盈量不可过大或过小,电动机两端盖上的孔应同轴;轴承润滑要良好。
为减少噪声,对噪声源进行实际调查,测量分析液压系统的声压级,进行频率分析,从而掌握噪声源的大小及频率特性,采取相应办法,具体列举如下:
① 使用低噪声电机;并使用弹性联轴器,以减少该环节引起的振动和噪声;
② 在电动机,液压泵和液压阀的安装面上应设置防振胶垫;
③ 尽量用液压集成块代替管道,以减少振动;
液压技术的特性适合各种机械和设备的自动化、、大容量、体积小、重量轻等方面的要求。所以虽然它是一门比较新的技术分支,但是在主动 力的传递机构、辅机的操作机构或作业自动化控制机构等方面广泛应用。
液压系统中出现空穴现象后,气泡随油液流到高压区时,在高压作用下气泡会迅速破裂,周围液体质点以高速来填补这一空穴,液体质点间高速碰撞而形成局部液压冲击,使局部的压力和温度均急剧升高,产生强烈的振动和噪声。
为了防止产生空穴现象和气蚀,一般可采取下列措施:
1、减小流径小孔和间隙处的压力降,一般希望小孔和间隙前后的压力比p1/p2<3.5。
2、正确确定液压泵吸油管内径,对管内液体的流速加以限制,降低液压泵的吸油高度,尽量减小吸油管路中的压力损失,管接头良好密封,对于高压泵可采用辅助泵供油。
3、整个系统管路应尽可能直,避免急弯和局部窄缝等。
4、提高元件抗气蚀能力。
钻杆是钻柱的基本组成部分。其主要作用是传递扭矩和输送钻井液,并靠钻杆的逐渐加长使井眼不断加深。因此,钻杆在石油钻井中占有十分重要的地位。
钻杆的钢级是指钻杆钢材的等级 [5] ,它由钻杆钢材的屈服强度决定。API(美国石油学会)将钻杆钢材等级分为五级:D、E、95(X)、105(G)、135(S)。钻杆钢级越高,管材的屈服强度越大,钻杆的各种强度也就越大。在钻柱的强度设计中,推荐采用提高钢级的方法来提高钻柱的强度,而不采用增加璧厚的方法。