陕西汉中氧化铝球回收流程
-
¥2000.00
活性氧化铝作为吸附剂的主要的工业应用包括气体干燥、液体干燥、水质净化、石油工业的选择吸附以及色层分离工艺等。
由于活性氧化铝对水有较强的亲和力,因此在气体干燥中得到了广泛应用。能够用活性氧化铝干燥的气体主要有:乙炔、裂解气、焦炉气、氢气、氧气、空气、乙烷、氯化氢、丙烷、氨气、乙烯、硫化氢、丙烯、氩气、甲烷、二氧化硫、二氧化碳、天然气、氦气、氮气、氯气等。由于活性氧化铝吸附水时放出大量的热,因此,应用时要综合干燥能力、干燥速度、换热及再生方式等进行设计。
中国已知的铝土矿储量约为23亿t ,居世界第五位。与其他加工铝土矿的国家不同,中国铝土矿矿石98 %以上有硬水铝石存在的特点,含有约80 %的硬水铝石。中国铝土矿中的脉石矿物主要是高岭石、叶蜡石和伊利石,其余是少量的钛和铁杂质。这些脉石矿物经常以细粒浸染的包体形式存在。中国硬水铝石矿石一个不理想的特点是低铝硅比,典型的范围为4~6 。
由于中国丰富的硬水铝石铝土矿资源在经济上的重要性,因此对开发浮选- 拜耳法进行了深入研究。作为一种基于表面润湿性的分离技术,浮选有较高的通用性,尤其适于细粒分选,因此被选择作为硬水铝石矿石潜在的物理富集方法。早期研究的努力开发出了一些直接浮选硬水铝石而脱除硅酸盐矿物的新螯合捕收剂。例如使用一种称为RL的新型阴离子捕收剂浮出硬水铝石,回收率超过90 % ,而铝硅酸盐矿物被无机抑制剂抑制,从而使浮选精矿中铝硅比大于11。
硬水铝石广泛分布于铝土矿和红土及某些岩石中。硬水铝石可用作耐火材料,也可用来提炼铝。铝的氧化物矿物。白色或淡灰色,坚硬,具玻璃光泽。在刚玉砂中与刚玉伴生,并广泛分布于红土、铝土矿及铝质黏土中。大量产于匈牙利、南非、法国、美国阿肯色州和密苏里州。硬水铝石与软水铝石成同质二象(即化学成分相同,但晶体结构不同)。它不含氢氧基,但含有与氧原子呈二次配位的氢阳离子
由于硬水铝石与铝硅酸盐黏土矿物在表面破裂键方面存在明显差别,因此,细磨的矿物粒子呈现明显不同的表面电荷特性,它可以相应的等电点(iep)加以表征。对硬水铝石而言,得到的典型iep为pH6.4 ,此数值大大高岭石、伊利石和叶蜡石各自的3.6 、2.8 和2.4 的iep 值。这三种铝硅酸盐黏土矿物的Zeta电位随pH的变化呈现类似规律。
发现了对这些黏土矿物的一种强捕收剂后,对硬水铝石矿石反浮选的第二个要求是寻找一种对硬水铝石的抑制剂,而且也可作为一种分散剂。由于从理论分析可知,需要对硬水铝石进行分散,否则它将与细粒黏土矿物产出杂凝聚,从而导致明显的机械夹带和较差的泡沫质量。业已发现,DDA在从pH4~10的宽范围内能有效浮出硬水铝石,预计DN12也有类似性能,这就为硬水铝石矿石的反浮选提供了机遇。因此进行了一些努力来试验无机多磷酸盐作为硬水铝石潜在的分散剂/ 抑制剂。
选择多磷酸盐作为有潜力的抑制剂是基于在硫化矿和氧化矿浮选中磷酸盐作为有效的分散剂和抑制剂的已知经验。光谱研究表明,磷酸根阴离子与暴露的表面金属离子的配合作用是金属硫化物和氧化物浮选中聚磷酸盐的主要抑制和分散机理。在硬水铝石和高岭石浮选的抑制研究中,发现用DDA作捕收剂浮选硬水铝石时,六偏磷酸钠( (NaPO3) 6 ,简称SHMP) 是有效的抑制剂。在不同的SHMP浓度下DDA浮选硬水铝石和高岭石的回收率与pH的关系,在所试验的全部pH范围内,连续提高SHMP的加入量便抑制了硬水铝石的回收。
虽然在硬水铝石矿石的反浮选中无机磷酸盐对抑制硬水铝石表现出某种程度的选择性,但高岭石的可浮性相则对较低,因此下一步的努力集中于聚合的有机抑制剂上。天然谷物淀粉作为硫化物和氧化物的抑制剂,尤其是在铁矿石和磷酸盐矿石的反浮选中,已进行了深入研究,因此可以预计,在其基本的D-葡萄糖结构单元中具有大量亲水的-OH基团的多糖大分子,可能是含有相当数量活性铝位置的硬水铝石良好的抑制剂,遗憾的是,未改性的淀粉仅对硬水铝石和高岭石浮选产生不大的抑制。通过考察羟肟酸盐与过渡金属的螯合性质认为,经改性的具有羟肟酸的淀粉可能为硬水铝石矿石反浮选时从黏土矿物中选择性抑制硬水铝石提供了机会
应用上述研究所得到的基础知识,使用中国河南省的硬水铝石试样进行了反浮选分离试验。给矿试样进行了分析,从一个铝硅比5.7 的给矿,反浮选产出精矿, 氧化铝回收率为86 % ,铝硅比为10.6 ,这种精矿适于作为拜耳法的原料。
在中国全国基础研究和开发计划的资金支持下,中国中南大学胡教授领导下的研究组成功地研究了硬水铝石矿石的反浮选工艺,分选指标达到了用阴离子捕收剂直接浮选硬水铝石的同等水平。