冷干法烟气二氧化硫在线监测系统
-
¥75000.00
我公司固定污染源烟气排放连续监测系统由采样探头、粉尘仪、温压流一体监测仪、分析机柜、标准样气、管线等组成。其中采样探头、粉尘仪、温压流探头安装于监测点(烟道或烟囱),分析机柜安放于室内。样气通过采样探头、伴热管线进入分析机柜,经由分析机柜内的预处理系统进入烟气分析仪,测量SO2、NOX、氧含量等参数;粉尘仪用于测量粉尘浓度,温压流一体监测仪用于测量温度、压力、流速,测量信号通过电缆传输至分析机柜内的数据采集与处理系统;置于分析机柜内部的工控系统可实现实时数据的显示、数据传输、数据储存、历史数据查询、图形数据分析、报表统计等功能。标准气体用于校准分析仪表。
烟气cems在线监测系统 烟气治理设备效率在线监控设施
CEMS 系统主要由四个部分组成,具体如下:
(1)气态污染物监测部分:监测烟气中的NOx、NH3 浓度等。
(2)烟气排放参数监测部分:监测烟气流速、温度、压力、氧含量等。
(3)控制系统部分:采用PLC 控制,包括系统的采样、反吹、维护、校准、报警等的控制。同时当系统维护、反吹、校准的时候,系统模拟量信号输出保持不变,另外当系统处于报警的时候,系统会根据各种报警采取相应的控制。完成数据的采集、处理,并按相关标准要求的数据格式将相关参数上传。
二、烟气脱硝系统中CEMS 存在的主要问题
2.1 粉尘浓度高引起的采样系统堵塞问题
脱硝系统的CEMS 布置在省煤器和空预器之间,由于烟气没有经过除尘器,烟气中的粉尘浓度高达30g/m3,有的甚至更高,极易造成烟气采样系统堵塞。
用探头位置设置过滤装置,避免粉尘颗粒进入采样管,引起采样管线堵塞,一旦堵塞,处理起来的难度就会很高。同样,在测量烟气流速时,也要考虑皮托管的堵塞问题。因而解决好采样系统中过滤器的堵塞和清理对烟气样气分析至关重要。
共性问题:
1.烟气采样系统中采样管线伴热效果差,采样管线的伴热温度不能维持在烟气露点温度以上,造成烟气在管内结露、在烟气中粉尘的共同作用下引起采样管堵塞。
2.因锅炉投油助燃,烟气中的大量油烟污染并堵塞取样探头。
3.烟气中粉尘含量过大,导致取样探头内的过滤器堵塞。
4.取样探头内的过滤器滤芯孔径的选择不合理,孔径过大,进入取样管线的灰尘过多。
5.采样探头中过滤网的孔径的选择太小,增大了堵塞几率。
6.安装时,管道弯曲半径过小或打折,流道受阻,产生堵塞。
7.吹扫时间间隔设置过长。
8.吹扫用压缩空气是带水、含油,从而污染堵塞管道。
2.2 分析仪因无流量而失灵
由于脱硝CEMS 的工作环境相当恶劣,可能造成取样系统堵塞,因此分析仪会因无流量而失灵,监测分析数据失效。共性问题:
1.取样管道或探头堵死。
2.预处理系统内部过滤器堵塞。
3.预处理系统中冷凝器结冰,除湿效果差;
4.预处理系统中蠕动泵故障,冷凝器不能正常工作,除湿效果差。
5.预处理系统中的抽气泵长时间带水运行,烟气抽取不出。
2.3 高温的问题
一般情况下,脱硫系统入口的烟温约为115~150℃,脱硫系统出口的烟温约为50℃(无GGH)。而在脱硝系统入口的烟温在310~420℃左右,出口烟温与入口相差不大。
因此,如果采用与脱硫CEMS 系统相同的测量方法,则采样探头、皮托管流量计的取压元件,温度仪表等需插入烟道中设备选用耐高温的材料,确保其能在高温环境下安全、稳定的运行,从而数据的准确性。
2.4 腐蚀变形的问题
脱硝系统中的烟气中含有、NO、NO2、水蒸气、NH3、和SO2 等。烟气在反应过程中可能生成酸或者碱以及强酸弱碱盐等物质。工作环境比较恶劣,采样探头、皮托管流量计的取压元件、温度仪表都置于烟道内,同时烟道内的烟气流速比较快(一般为15m/s),这些都会导致传感器的变形和腐蚀,引起测量仪表失效。
共性问题:
脱硫脱硝系统中的SO2/NO2 气体都易溶于水,溶解体积比分别为1:40(水:气)和1:4(水:气)。SO2/NO2 气体溶于水后分别生成硫酸和硝酸溶液,该酸性溶液的腐蚀性随其浓度的增大而变大。
脱硫系统的SO2/SO3 原烟气露点温度在120℃~130℃;脱硝系统的NOx 原烟气露点温度在60℃左右。对于直接抽取式CEMS,如果取样管线温度控制不当,则污染物气体会直接结露。
脱硝系统净化烟气中NH3 与SO3 反应生成硫酸氢铵和硫酸铵。这两种物质都是强酸弱碱盐,水溶液具有一定的腐蚀性。并且,硫酸铵固体在280℃开始分解,分解物质为硫酸氢铵和氨气,因此这两种物质在取样管中有结晶的可能。
2.5 分析传感器的量程以及检出限的问题
针对燃煤锅炉的实际情况,脱硝装置前烟道内NOx 的浓度在400~1000 mg/Nm3,《大气污染物排放标准》(GB13223-2011)规定脱硝后的氮氧化物浓度不大于100mg/Nm3。
因此脱硝装置前后NOx的检测要求传感器具有较大的量程,并且具有较低的检测限,确保脱硝前后NOx 的检测的准确性。同时,为了防止脱硝过程中还原剂NH3 的逃逸造成二次污染,以及生成氨盐腐蚀下游设备,在脱硝装置的出口设置了氨逃逸检测设备,《火电厂烟气脱硝工程技术规范_SCR》(HJ_562-2010)逃逸氨的浓度不大于3 ppm,因此对逃逸氨设备低检测限的要求则更高,一般要求为0.15~0.3 ppm。
CEMS气态污染物监测检查事项
气态污染物监测子系统,主要用于监测SO2、NOx的浓度和排放总量。
检查事项有以下3项:1. 颗粒物过滤器是否干净 。2. 红外法及化学发光法的 NO2 转换器的工作是否正常,其温度与登记备案的是否一致 。3. CEMS内部管路连接是否紧固,管壁是否没有积灰及冷凝水。运行不正常的现象:1. 颗粒物过滤器比较肮脏,或者有积灰 。2. CEMS内部管路连接松动,管壁存在积灰或者冷凝水。二、CEMS颗粒物监测检查事项颗粒物监测子系统,主要用于监测烟尘的浓度和排放总量。检查事项有以下4项:1. 吹扫系统电机是否正常工作 。2. 隔离烟气与光学探头的玻璃视窗是否清洁,仪器光路是否准直 。3. 吹扫系统的管道连接是否正常。4. 吹扫风机的净化风滤芯是否清洁。运行不正常的现象:1. 吹扫系统电机出现异常噪声、震动。2. 隔离烟气与光学探头的玻璃视窗表面积尘,仪器光路偏离。3. 吹扫系统的管道有裂缝,连接松动。4. 吹扫风机的净化风滤芯积灰。三、CEMS烟气参数监测检查事项烟气参数监测子系统,主要用来测量烟气流速、烟气温度、烟气压力、烟气含氧量、烟气湿度等,这些指标用于排放总量的积算和相关浓度的折算。检查事项有以下4项:1. 皮托管是否变形,皮托管是否与气流方向垂直,法兰是否紧固无松动。2. 热敏温度计表面是否有积尘。3. 空气过量系数、皮托管系数 K 值、烟道截面积、速度场系数与登记备案是否一致 。4. 废气排放量、气态污染物浓度等换算是否符合有关要求。运行不正常的现象:1. 皮托管变形、堵塞,与烟道气流方向偏离,不垂直。2. 热敏温度计表面有腐蚀情况,有积尘。3. 空气过量系数、皮托管系数 K 值、烟道截面积、速度场系数与登记备案不一致。4. 废气排放量、气态污染物浓度等换算不符合的相关要求。
CEMS系统的运用十分广泛,主要集中在城市的工厂。包括化工厂、水泥厂、发电厂等会产生空气污染物的单位。在石油化工厂中,CEMS系统主要安装在硫磺回收生产装置烟气排放口、动力站锅炉烟气汇总排放口、催化裂化生产装置烟气排放口和常减压生产装置烟气排放口。在这四个出口处对于污染气体进行实时的监控。在水泥厂中,CEMS系统主要安装在窑尾回转窑引风机后烟道,对于在水泥生产过程中产生的烟尘,以及会污染环境的气体进行在线监测。
产品基于的DOAS紫外差分吸收光谱技术,采用特的算法,长光程多次回返气体室。设备操作和维护方便。整套系统结构简单,模块化设计,稳定性强,运行成本低。满足低排放监测市场需要。
本系统由气态污染物监测子系统、颗粒物监测子系统、烟气参数监测子系统及数据采集与处理子系统组成,其中气态污染物监测子系统的预处理单元、分析单元和数据采集与处理子系统安装在机柜内,可以连续监测二氧化硫浓度(SO2)、氮氧化物浓度(NOx)、氧含量(O2)等参数的湿基值、干基值和折算值,以及根据颗粒物(粉尘)浓度、烟气温度、压力、流速等多项相关参数统计排放率、排放总量等,并能对测量到的数据进行有效管理,具有现场数据实时传送、远程故障诊断、报表统计和图形数据分析等功能,实现了工作现场的无人值守。整套系统结构简单、动态范围广、实时性强、组网灵活、运行成本低,同时系统采用模块化结构,组合方便,根据客户需求有所增减;并且能够与企业内部的DCS和的数据系统通讯。
样气在采样泵的抽力下由取样探头取出,样气中的绝大部分颗粒物被取样探头中的过滤器滤除,滤除后通过伴热管线直接输送到气室进行分析,不需通过冷凝装置。气室温度保持与伴热管线和采样探头一直在150℃。由控制单元实现自动反吹、自动标定、温度报警提示等功能,并显示系统工作状态。采用二级精细过滤,确保气体测量室不被污染,从而提高分析仪的使用寿命。
校准单元:具有自动和手动校准的功能。校准操作简单,非人员经简单培训后可熟练操作。自动校准时间可根据要求自行设定时间。系统出厂时提供运行时所需各种标准气体,标准气体满足下列要求:
(1)气量能满足系统启动后一年内正常校准的需要。
(2)所有标准气体按照国家相关要求储存,存在钢瓶内。
(3)交付标准气体可追朔性文件和说明其种类、浓度和数量的文件。
反吹单元:当系统部件如采样探头、皮托管差压流量计与烟气接触时,提供的反吹子系统以防止烟气堵塞设备部件。反吹空气系统失效时,有报警信号输出。采用0.4~0.7Mpa的仪表风对采样探头和皮托管差压流量计进行脉冲式反吹。反吹功能均可以手动或者自动操作,自动反吹周期可以任意设定。
紫外差分光谱气体分析仪对经过过滤除尘的烟气进行分析,基于差分吸收光谱算法(DOAS),能够同时测量多种气体组分如SO2、NO等,广泛应用于烟气排放连续监测系统、工业过程气体分析系统中。
光源发出的光束汇聚进入光纤,通过光纤传到气体室,穿过气体室时被待测气体吸收,由光纤传输到光谱仪,在光谱仪内部经光栅分光,由阵列传感器将分光后的光信号转换为电信号,获得气体的连续吸收光谱信息。根据此信息采用差分吸收光谱算法得到被测气体的浓度。
⑴差分吸收光谱技术(DOAS)
DOAS核心思想将气体的吸收光谱分解为快变和缓变两部分。快变部分与气体分子结构和组成的元素有关,是分子吸收光谱的特征部分;缓变部分与颗粒物、水汽、背景气,及测量系统的变化等因素有关,是干扰部分。DOAS采用快变部分计算被测气体的浓度,测量结果不受干扰,准确性高。
SIC-7紫外光谱气体分析仪同时采用特的DOAS算法和PLS算法相结合的处理方式,消除了颗粒物、水汽、背景气体的干扰,同时也消除了测量系统波动对测量结果的影响,了测量的准确性和稳定性。
⑵仪表特点
可靠性高
采用进口脉冲氙灯作为光源,寿命达10年,采用固化光谱仪,无运动部件,可靠性高。
测量精度高、稳定性好
采用DOAS(差分光学吸收光谱)算法,测量结果不受颗粒物、水份等因素干扰,测量准确度高;同时DOAS算法也消除了由仪器老化引起的误差,测量稳定性好。
多种组分同时测量
通过对连续光谱的分析,可同时测量多种气体化学组分的浓度,具备高集成度和性价比
高度智能化、数字化
内置多块处理器,处理器间采用高速数据总线通讯技术,各模块具备强大的数字化配置和监测功能;触摸屏式人机界面,操作简单、使用方便。
采用进口薄型背照式CCD面阵传感器,具有优良的紫外响应能力,适合SO2、NO的检测需要
4.4.3.氧含量监测子系统
电化学氧传感器的工作原理是当被测气体氧分子通过透气膜即可在传感器内发生氧化-还原反应,当氧分子到达正极表面时,发生还原反应,同时负极发生氧化反应,化学反应过程如下:
正极:O2+2H2 O+4e→4OH-
负极:Pb+2OH-→PbO+ H2 O+2e
电池处于平衡状态时,两电极间电势值E恒定不变。阴极和阳极两个反应发生生成电流,电流大小相应地取决于氧气反应速度(法拉第定律),可外接一只已知电阻来测量产生的电势差,这样就可以准确测量出氧气的浓度。
设备到达需方工厂前,需方需按设备安装所需相关要求提前做好设备安装前的一切准备工作并且承担相应的费用,包括可能涉及的开孔、法兰预埋、桥架铺设、分析小屋搭建等基建、能源配套、安装所需的水、电、气等。终供方根据到货和现场准备情况安排专职工程师到现场安装指导、调试和培训的初步日程计划。
在具备现场安装条件的情况下,买方提前通知供方,并提供两名以上电气人员主要负责机柜就位、探头安装、管线铺设、设备卸货与搬运等工作、同时提供调试工程师食宿和其它工作上的方便。供方派有经验的工程师到现场进行电气接线和设备通电系统调试,并尽快调试好设备投入正常运行。