徐汇WE43镁合金棒厂家批发
-
¥100.00
在3D打印技术的原因方面,美国陆军除了定期与相关公司合作,也在与一些大学合作。近,中佛罗里达大学的科学家成功地3D打印了一种镁合金,称为WE43。据悉,研究人员开发这种材料并非巧合,而是出于军方的需要。美国士兵经常需要被迫携带极其沉重的包和装备,因此减轻他们的负重是有非常有必要的研究方向。不过,在WE43和粉末激光融合工艺的帮助下,美国陆军和中佛罗里达大学可能已经找到了解决方案。
来自麻省理工的研究人采用SLM技术进行了WE43镁合金棒的增材制造。并对沉积态、热等静压和热处理后的组织和机械性能以及腐蚀性能进行了对比研究。SLM沉积态的组织得到细化,优化SLM工艺参数之后进行热等静压,其缺陷率小于0.1%。电化学测试结果表明SLM制造的WE43镁合金棒比铸造态更易腐蚀。这是因为富集了富Zr氧化物的原因且均匀分布,同时由于SLM的快速冷却改变了固溶的基材的组织。氧化物颗粒主要来自粉末。结果表明SLM制造的Mg合金性能可以得到增强,只要对粉末的粉末特征能够更加充分的理解和控制。
直到今天,针对Mg合金的AM制造依然局限于非常少量的镁合金系统,如AZ系和ZK系以及稀土镁合金。镁合金的AM研究的发展的时间轴也表明:大多数的镁合金AM制造集中在2010年以后,包括3D打印制造复杂形状的具有特殊用途的生物器件。近的研究主要集中在AM制造WE43镁合金棒上。WE43镁合金棒 镁合金是一种Mg-Y-RE系合金。对WE43镁合金棒感兴趣的原因在于合金中含大约4wt%的Y和3%的RE(一般是混合Nd、La和Ce,同时含小于0.5wt%的Zr,Zr的作用是细化晶粒)。含稀土镁合金包括WE43镁合金棒 和WE54, 具有提高室温和高温机械性能的能力(如拉伸和蠕变)。这一性能的提高是靠形成了热稳定性比较高的金属相来实现的。与此同时,耐蚀性和铸造时的合金耐热性(燃点提高)也相应的提高。
尤其是在近的关于研究SLM制造WE43镁合金棒的显微组织以及制造复杂形状的WE43镁合金棒的研究开始做增多。代研究SLM制造WE43的制造支架(指周期性的多孔结构),并研究了在体液中的降解行为、机械性能和生物相容性。结果表明SLM制造的样品呈现出骨替代物的为的替代物特征。制备块体的WE43镁合金棒时的显微组织和机械性能并同铸造状态和粉末挤压态相比较。SLM制造出的样品拉伸强度较高。近的研究表明采用SLM制造的样品并热等静压WE43镁合金棒,开展相应的组织和性能研究。结果发现热等静压之后可以进一步的提高SLM制品的致密度。同时打印和热等静压的产品比传统铸造的WE43镁合金棒的性能要好。
EV31A镁合金和WE43C镁合金在300℃高温下具备较高强度主要是由于添加稀土Nd、Gd、Y元素引起的固溶强化和析出强化。然而,镁合金的耐蚀性较差,极易产生应力腐蚀开裂(SCC)和氢致开裂。通常变形镁合金比铸造镁合金更容易产生应力腐蚀开裂。关于镁稀土合金在慢应变速率测试条件下的应力腐蚀开裂已有较多研究,但由于这种测试条件下试样受到持续的拉伸应力,在试样表面形成的钝化膜可能处于不稳定状态,因此难以探究稳定钝化膜对应力腐蚀开裂的作用。此外,前期研究表明:铁基合金中位错堆积易导致裂纹萌生,位错堆积的形态也会影响合金的应力腐蚀开裂行为。然而,目前关于变形特性对于镁合金表面钝化膜的击穿和应力腐蚀开裂行为的影响尚无充分研究。
FLD实验的困难和费时特性要求对FLD进行数值测定。M-K理论是计算成形极限的的不稳定性理论之一,并在多年来得到进一步发展。结合M-K理论的结晶塑性方法被广泛应用于面心立方(FCC)和体心立方(BCC)板材的成形极限分析。热变形中的DRX建模已经有了一些研究,这些研究通过耦合晶体塑性集成了力学响应、微观组织演变和织构发展的模拟。在他们的工作中,也实施了伴随DRX的超塑性机制,并评估了WE43合金在550 K以上由大量非常小的核引起的另外明显的应力软化。然而,到目前为止,基于晶体塑性的FLD预测还没有将DRX作为一个操作机制,将退火效应作为一个影响因素。