304絮凝池折弯板,南京304絮凝池折弯板批发
-
面议
折板絮凝池的构造是在池内放置一定数量的平行折板或波纹板。主要运用折板的缩放或转弯造成的边界层分离而产生的附壁紊流耗能方式,在絮凝池内沿程保持横向均匀,纵向分散地输入微量而足够的能量,有效地提高输入能量利用率和混凝设备容积利用率,增加液流相对运动,以缩短絮凝时间,提高絮凝体沉降性能。
同时,大尺度的涡旋从主流吸取动能,在运动过程中传递给较小尺度的涡旋,这样逐级传递,一直到微尺度的涡旋。在较大尺度的涡运动中,流体粘性几乎不起作用,可忽略不计,因而在动能传递中几乎没有能耗;而在微尺度的涡旋运动中,流体粘性将起主要作用,传送到这些低级涡旋的能量就会通过粘性作用转化为热能。水流中同时存在无数大大小小的涡旋,产生一系列的脉动频率,具有连续的频谱。
往复式絮凝池也称隔板絮凝池。为一般常规的水平或垂直式水力絮凝反应池。即在流水渠中加装了横折或竖折档板,使加药混合后的水流形成近似于弦形弯曲。池内挡板或隔板的间距的安置使水流的速度梯度位分布呈逐步递减。底部还有一定的坡度以保持水深。此种形式的池可在相当宽广的流量范围内得到合理的成效。机械絮凝器相比,絮凝时间由于更为均匀的剪力场,故而常只需要前者的一半。隔板可由各种建筑材料一般可由砖砌成或薄形钢筋混凝土预制板构成。
好的絮凝效果不仅需要大量的颗粒碰撞,还需要控制颗粒进行合理有效的碰撞,使颗粒聚集起来。速度梯度是絮凝过程中常用的控制动力学因素。根据絮凝动力学理论得知,絮凝过程中的速度梯度值是逐渐减小的;而且开始时刻的速度梯度值要求能与混合阶段衔接上,所以一般要求较大。这时的絮凝也要求接触和碰撞,但是由微涡旋理论可知要求的水力半径要适合于自身的直径,才能发生有效碰撞。理论上,搅拌强度越大,速度梯度越大,相互接触碰撞的机会越多。但搅拌强度大(G值大),水流的剪切力就大,松散的絮体受到水流剪切会二次断开成为小絮体。因此要求搅拌的强度(也就是速度梯度)随着絮凝的进行而逐渐变小。整个混凝的过程中,G值是递减的。但是速度梯度递减规律,国内外的还没有定论。
在往复式折板后面能够形成涡旋,伴随着颗粒粒径在增加,涡旋的尺度由小变大,符合絮凝动力学规律;通过比较得出,圆弧形渠道絮凝池的湍流强度变化缓慢,分布更加均匀合理,不仅能够满足絮凝前期较大湍流强度的需要,也能满足絮凝后期颗粒碰撞的湍流强度,证明圆弧转弯渠道形比矩形转弯渠道有更好的絮凝效果。
圆弧形渠道能够减小渠道转弯处的速度,减少能耗。而且,圆弧形渠道能够产生很多复杂的涡旋结构,提高絮凝效率。通过两个方案中转弯处X 方向速度的对比证明,圆弧形拐弯往复式絮凝器的速度梯度变化规律更加合理,混凝效果更好。
传统往复式絮凝池在矩形渠道拐弯处速度方向改变为180°直接转变,而圆弧形渠道拐弯处的速度方向则是逐渐变化,变化比矩形拐弯渠道平缓的多。而其圆弧形拐弯渠道能够产生惯性离心力,进而产生各种微涡旋,根据王绍文教授提出的“惯性效应是絮凝的动力学致因”可知,圆弧形渠道能够提高絮凝效率,即絮凝效率较高
通过混凝动力学的研究,得到了混凝动力学中速度梯度与时间的关系G=G(0)/1+Kt;并通过拟合得到往复式絮凝池速度梯度的变化规律近似符合混凝动力学对速度梯度变化的要求;同时参考了往复式絮凝池的新研究成果—将往复式絮凝池转弯处的矩形渠道变成圆弧形状,设计出一种的往复式絮凝池。通过数学模拟发现:优化后的往复式絮凝池拐弯处的圆弧形渠道能够消除传统往复式絮凝池转弯处的死水区,而且圆弧形渠道处的水流速度比矩形渠道处的分布均匀,有利于节约能耗。
池的圆弧形转弯渠道改变了矩形渠道转弯处180°速度方向变化带来的能耗,降低了能耗;同时圆弧形渠道处的水流方向是逐渐变化的,从而产生惯性离心力,进而产生大量微涡旋,提高了絮凝效率 。