停车场通行:车牌识别系统道闸一体机能使入口高通行效率可达20部车/分钟,结合自助缴费终端,出口亦可达到与入口一样的通行效率,避免停车场内外车辆排队拥堵。
车牌识别系统的车牌校正
由于受拍摄角度、镜头等因素的影响,图像中的车牌存在水平倾斜、垂直倾斜或梯形畸变等变形,这给后续的识别处理带来了困难。如果在定位到车牌后*行车牌校正处理,这样做有利于去除车牌边框等噪声,更有利于字符识别。目前常用校正方法有:Hough变换法,通过检测车牌上下、左右边框直线来计算倾斜角度;旋转投影法,通过按不同角度将图像在水平轴上进行垂直投影,其投影值为0的点数之和时的角度即为垂直倾斜角度,水平角度的计算方法与其相似;主成分分析法,根据车牌背景与字符交界处的颜色具有固定搭配这一特征、求出颜色对特征点的主成分方向即为车牌的水平倾斜角度;方差小法,根据字符在垂直方向投影点的坐标方差小导出垂直倾斜角的闭合表达式,从而确定垂直倾斜角度;透视变换,利用检测到的车牌的四个顶点经过相关矩阵变换后实现车牌的畸变校正。
车牌识别系统的字符分割
定位出车牌区域后,由于并不知道车牌中总共有几个字符、字符间的位置关系、每个字符的宽高等信息,所以,为了车牌类型匹配和字符识别正确,字符分割是的一步。字符分割的主要思路是,基于车牌的二值化结果或边缘提取结果,利用字符的结构特征、字符间的相似性、字符间间隔等信息,一方面把单个字符分别提取出来,也包括粘连和断裂字符等特殊情况的处理;另一方面把宽、高相似的字符归为一类从而去除车牌边框以及一些小的噪声。一般采用的算法有:连通域分析、投影分析,字符聚类和模板匹配等。污损车牌和光照不均造成的模糊车牌仍是字符分割算法所面对的挑战,有待更好的算法出现并解决以上问题。